Skip to main content
Log in

Electrical conductivity of nanostructured and C60-modified aluminum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we study the electrical conductivity of nanostructured C60-modified aluminum, and the possibility of optimizing its electrical and mechanical properties. The model proposed allows estimating the electrical conductivity of the material at low surface filling factor. A number of samples with different C60 mass fractions and aluminum crystallites sizes have been obtained and investigated; a mean crystalline size, conductivity, and hardness of these samples have been determined. A theoretical model has been compared to the experimental data. The model is in qualitative agreement with the experiment. The X-ray photoelectron spectroscopy and Raman spectroscopy studies of the material structure indicate the presence of covalent bonds between the aluminum in the clusters and the C60 molecules, and they are consistent with the proposed shell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.D. Nikulin, A.K. Shikov, V.I. Pantsyrny, I.I. Potapenko, A.G. Silaev, N.A. Beljakov, A.E. Vorob’eva, E.A. Dergunova, N.I. Kozlenkova, M.V. Polikarpova, Patent RU 2074424 C1 (1997)

  2. A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 508, 167 (2009)

    Article  Google Scholar 

  3. H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae, Scr. Mater. 59, 360 (2008)

    Article  Google Scholar 

  4. I. Estrada-Guel, C. Carreno-Gallardo, J.L. Cardoso-Cortes, E. Rocha-Rangel, J.M. Herrera-Ramirez, R. Martinez-Sanchez, J. Alloys Compd. 495, 403 (2010)

    Article  Google Scholar 

  5. L. Kollo, C.R. Bradbury, R. Veinthal, C. Jaggi, E. Carreno-Morelli, M. Leparoux, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 528, 6606 (2011)

    Article  Google Scholar 

  6. T. Tokunaga, K. Kaneko, K. Sato, Z. Horita, Scr. Mater. 58, 735 (2008)

    Article  Google Scholar 

  7. J.G. Hou, Y. Li, Y. Wang, W. Xu, J. Zuo, Y.H. Zhang, Phys. Status Solidi A 163, 403 (1997)

    Article  ADS  Google Scholar 

  8. R.Z. Valiev, I.V. Aleksandrov, Bulk Nanostructured Metallic Materials: Production, Structure and Properties (Academkniga, Moscow, 2007) (in Russian)

    Google Scholar 

  9. E.G. Avvakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Novosibirsk, 1986) (in Russian)

    Google Scholar 

  10. M. Popov, V. Medvedev, V. Blank, V. Denisov, A. Kirichenko, E. Tat’yanin, V. Aksenenkov, S. Perfilov, R. Lomakin, E. D’yakov, V. Zaitsev, J. Appl. Phys. 108, 094317 (2010)

    Article  ADS  Google Scholar 

  11. V.V. Medvedev, M.Y. Popov, B.N. Mavrin, V.N. Denisov, A. Kirichenko, E.V. Tat’yanin, L.A. Ivanov, V.V. Aksenenkov, S.A. Perfilov, R. Lomakin, V.D. Blank, Appl. Phys. A, Mater. Sci. Process. 105, 45 (2011)

    Article  ADS  Google Scholar 

  12. A.J. Maxwell, P.A. Brühwiler, S. Andersson, D. Arvanitis, B. Hernnäs, O. Karis, D.C. Mancini, N. Mårtensson, S.M. Gray, M.K.-J. Johansson, L.S.O. Johansson, Phys. Rev. B 52, R5546 (1995)

    Article  ADS  Google Scholar 

  13. A.J. Maxwell, P.A. Brühwiler, D. Arvanitis, J. Hasselström, M.K.-J. Johansson, N. Mårtensson, Phys. Rev. B 57, 7312 (1998)

    Article  ADS  Google Scholar 

  14. F.A. Mohamed, Acta Mater. 51, 4107 (2003)

    Article  Google Scholar 

  15. A.S. Khan, B. Farrokh, L. Takacs, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 489, 77 (2008)

    Article  Google Scholar 

  16. D.R. Lide, CRC Handbook of Chemistry and Physics, 88th edn. (CRC Press, Boca Raton 2007)

    Google Scholar 

  17. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego 1996)

    Google Scholar 

  18. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie 1992)

    Google Scholar 

  19. M. Popov, Y. Koga, S. Fujiwara, B. Mavrin, V.D. Blank, New Diam. Front. Carbon Technol. 12, 229 (2002)

    Google Scholar 

  20. F.A. Mohamed, Y. Xun, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 354, 133 (2003)

    Article  Google Scholar 

  21. A.F. Mayadas, M. Shatzkes, J.F. Janak, Appl. Phys. Lett. 14, 345 (1969)

    Article  ADS  Google Scholar 

  22. A.F. Mayadas, Phys. Rev. B 1, 1382 (1970)

    Article  ADS  Google Scholar 

  23. J.J. Palacios, A.J. Perez-Jimenez, E. Louis, J.A. Verges, Nanotechnology 12, 160 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work was supported through a research grant from Russian Ministry of Education and Science (Contract No. 16.552.11.7014 and Contract No. 02.740.11.0792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zameshin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zameshin, A., Popov, M., Medvedev, V. et al. Electrical conductivity of nanostructured and C60-modified aluminum. Appl. Phys. A 107, 863–869 (2012). https://doi.org/10.1007/s00339-012-6805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6805-x

Keywords

Navigation