Skip to main content
Log in

Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75×10−2 Ω cm, exhibiting a factor of 105 higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 54, 3497 (1983)

    Article  ADS  Google Scholar 

  2. R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83, 2631 (1998)

    Article  ADS  Google Scholar 

  3. C.G. Granqvist, A. Hultaker, Thin Solid Films 411, 1 (2002)

    Article  ADS  Google Scholar 

  4. H. Pan, D. Lee, S.H. Ko, C.P. Grigoropoulos, H.K. Park, T. Hoult, Appl. Phys. A 104, 29 (2011)

    Article  ADS  Google Scholar 

  5. T. Minami, S. Ida, T. Miyata, Thin Solid Films 416, 92 (2002)

    Article  ADS  Google Scholar 

  6. B.L. Zhu, D.W. Zeng, J. Wu, W.L. Song, C.S. Xie, J. Mater. Sci., Mater. Electron. 14, 521 (2003)

    Article  Google Scholar 

  7. Y. Keunbin, L. Chongmu, J. Mater. Sci., Mater. Electron. 18, 385 (2007)

    Article  Google Scholar 

  8. S.H. Park, J.B. Park, P.K. Song, Curr. Appl. Phys. 10, S488 (2010)

    Article  ADS  Google Scholar 

  9. H. Bisht, H.T. Eun, A. Mehrtens, M.A. Aegerter, Thin Solid Films 351, 109 (1999)

    Article  ADS  Google Scholar 

  10. T. Fukano, T. Motohiro, Sol. Energy Mater. Sol. Cells 82, 567 (2004)

    Google Scholar 

  11. H.X. Chang, G.F. Wang, A. Yang, X.M. Tao, X.Q. Liu, Y.D. Shen, Z.J. Zheng, Adv. Funct. Mater. 20, 2893 (2010)

    Article  Google Scholar 

  12. S. Jang, H. Jang, Y. Lee, D. Suh, S. Baik, B.H. Hong, J.H. Ahn, Nanotechnology 21, 425201 (2010)

    Article  ADS  Google Scholar 

  13. J.W. Jo, J.W. Jung, J.U. Lee, W.H. Jo, ACS Nano 4, 5382 (2010)

    Article  Google Scholar 

  14. B.S. Shim, J.A. Zhu, E. Jan, K. Critchley, N.A. Kotov, ACS Nano 4, 3725 (2010)

    Article  Google Scholar 

  15. K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764 (1997)

    Article  ADS  Google Scholar 

  16. R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087 (1998)

    Article  ADS  Google Scholar 

  17. P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, Appl. Phys. Lett. 82, 1117 (2003)

    Article  ADS  Google Scholar 

  18. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, Thin Solid Films 431, 369 (2003)

    Article  ADS  Google Scholar 

  19. I. Ozerov, D. Nelson, A.V. Bulgakov, W. Marine, M. Sentis, Appl. Surf. Sci. 212, 349 (2003)

    Article  ADS  Google Scholar 

  20. V. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063 (1996)

    Article  ADS  Google Scholar 

  21. T. Minami, Thin Solid Films 516, 5822 (2008)

    Article  ADS  Google Scholar 

  22. B.J. Norris, J. Anderson, J.F. Wager, D.A. Keszler, J. Phys. D, Appl. Phys. 36, L105 (2003)

    Article  ADS  Google Scholar 

  23. C.S. Li, Y.N. Li, Y.L. Wu, B.S. Ong, R.O. Loutfy, J. Phys. D, Appl. Phys. 41, 125102 (2008)

    Article  ADS  Google Scholar 

  24. B. Sun, H. Sirringhaus, Nano Lett. 5, 2408 (2005)

    Article  ADS  Google Scholar 

  25. C. Hua-Chi, C. Chia-Fu, T. Chien-Yie, Appl. Phys. Lett. 90, 12113 (2007)

    Article  Google Scholar 

  26. B.S. Ong, C.S. Li, Y.N. Li, Y.L. Wu, R. Loutfy, J. Am. Chem. Soc. 129, 2750 (2007)

    Article  Google Scholar 

  27. M.C. Gwinner, Y. Vaynzof, K.K. Banger, P.K.H. Ho, R.H. Friend, H. Sirringhaus, Adv. Funct. Mater. 20, 3457 (2010)

    Article  Google Scholar 

  28. E.A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998)

    Article  Google Scholar 

  29. M. Ristic, S. Music, M. Ivanda, S. Popovic, J. Alloys Compd. 397, L1 (2005)

    Article  Google Scholar 

  30. Y. Natsume, H. Sakata, Thin Solid Films 372, 30 (2000)

    Article  ADS  Google Scholar 

  31. M. Ohyama, H. Kozuka, T. Yoko, Thin Solid Films 306, 78 (1997)

    Article  ADS  Google Scholar 

  32. M. Berber, V. Bulto, R. Kliss, H. Hahn, Scr. Mater. 53, 547 (2005)

    Article  Google Scholar 

  33. B. Ismail, M. Abaab, B. Rezig, Thin Solid Films 383, 92 (2001)

    Article  ADS  Google Scholar 

  34. C. Yu-Yun, H. Jin-Cherng, P.W. Wang, P. Yao-Wei, W. Chih-Yuan, L. Yung-Hsin, Appl. Surf. Sci. 257, 3446 (2011)

    Article  ADS  Google Scholar 

  35. H. Pan, N. Misra, S.H. Ko, C.P. Grigoropoulos, N. Miller, E.E. Haller, O. Dubon, Appl. Phys. A 94, 111 (2009)

    Article  ADS  Google Scholar 

  36. J. Ederth, P. Heszler, A. Hultaker, G.A. Niklasson, C.G. Granqvist, Thin Solid Films 445, 199 (2003)

    Article  ADS  Google Scholar 

  37. J.S. Na, Q. Peng, G. Scarel, G.N. Parsons, Chem. Mater. 21, 5585 (2009)

    Article  Google Scholar 

  38. X.H. Wang, R.B. Li, D.H. Fan, Appl. Surf. Sci. 257, 2960 (2011)

    Article  ADS  Google Scholar 

  39. A. Weidenkaff, A. Steinfeld, A. Wokaun, P.O. Auer, B. Eichler, A. Reller, Sol. Energy 65, 59 (1999)

    Article  Google Scholar 

  40. A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. 87, 122102 (2005)

    Article  ADS  Google Scholar 

  41. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, New York, 2000)

    Google Scholar 

Download references

Acknowledgements

Financial support to UC Berkeley by the US National Science Foundation under the STTR Grant No. IIP-0930594 through AppliFlex LLC and to KAIST by the Korea Ministry of Knowledge Economy (Grant No. 10032145) is gratefully acknowledged. The authors also would like to thank Reena Zalpuri from the Electron Microscope Lab in UC Berkeley for assistance in recording TEM images and Prof. Nathan Cheung of the EECS Department, UC Berkeley for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas P. Grigoropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D., Pan, H., Ko, S.H. et al. Non-vacuum, single-step conductive transparent ZnO patterning by ultra-short pulsed laser annealing of solution-deposited nanoparticles. Appl. Phys. A 107, 161–171 (2012). https://doi.org/10.1007/s00339-012-6792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6792-y

Keywords

Navigation