Skip to main content
Log in

Thermal Annealing Influences on the Photoresponse of Zinc Oxide Nanoparticle Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the effects of annealing temperature on the photoresponse of zinc oxide (ZnO) nanoparticle (NP) films are reported. The photoresponse mechanism of ZnO NP films at various annealing temperatures is investigated using a blue–violet laser diode at a wavelength of 405 nm. The electrical sensitivity measurements of annealed film at 500°C shows an increasing photocurrent from 0.5 µA to 4 µA when it is irradiated by a 405-nm laser with an output power of 50 mW. Oxygen vacancies of film surfaces constructed by the annealing process have a significant role in increasing the photocurrent. The structure and optical properties of fabricated films are studied using x-ray diffraction pattern, field emission scanning electron microscopy, Fourier transformation infrared spectroscopy, UV–visible absorption spectrometry and photoluminescence spectroscopy. Also, the photoconductivity behavior of films is investigated using a two-point probe technique. The results show that by increasing annealing temperature, the electrical conductivity of the films has remarkably improved. The properties that are explored in the annealed ZnO NP films make this material an excellent alternative for fabricating photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.J. Lu, Z.F. Shi, C.X. Shan, and D.Z. Shen, ZnO-based deep-ultraviolet light-emitting devices. Chin. Phys. B 26, 047703 (2017).

    Article  CAS  Google Scholar 

  2. V.H. Nguyen, D. Bellet, B. Masenelli, and D. Munoz-Rojas, Increasing the electron mobility of ZnO-based transparent conductive films deposited by open-air methods for enhanced sensing performance. ACS Appl. Nano Mater. 1, 6922 (2018).

    Article  CAS  Google Scholar 

  3. S. Sun, L. Guo, X. Chang, Y. Liu, S. Niu, Y. Lei, T. Liu, and X. Hu, A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. J. Mater. Sci. 54, 7048 (2019).

    Article  CAS  Google Scholar 

  4. L.F. da Silva, J.C. M’peko, A.C. Catto, S. Bernardini, V.R. Mastelaro, K. Aguir, C. Ribeiro, and E. Longo, UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens. Actuators B 240, 573 (2017).

    Article  CAS  Google Scholar 

  5. P. Liu, W. Chen, S. Bai, Y. Liu, and Q. Wang, Fabrication of an ultralight flame-induced high conductivity hybrid sponge based on poly (vinyl alcohol)/silver nitrate composite. Mater. Des. 139, 96 (2018).

    Article  CAS  Google Scholar 

  6. C. Wei, J. Xu, S. Shi, Y. Bu, R. Cao, J. Chen, J. Xiang, X. Zhang, and L. Li, The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO. J. Colloid Interface Sci. 577, 279 (2020).

    Article  CAS  Google Scholar 

  7. F. Abbasi, F. Zahedi, and M. Hasan Yousefi, Fabricating and investigating high photoresponse UV photodetector based on Ni-doped ZnO nanostructures. Opt. Commun. 482, 126565 (2021).

    Article  CAS  Google Scholar 

  8. P. Gu, X. Zhu, and D. Yang, Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Appl. Phys. A 125, 50 (2019).

    Article  CAS  Google Scholar 

  9. Y. Duan, M. Cong, D. Jiang, W. Zhang, X. Yang, C. Shan, X. Zhou, M. Li, and Q. Li, ZnO thin film flexible UV photodetectors: regulation on the ZnO/Au Interface by piezo-phototronic effect and performance outcomes. Adv. Mater. Interfaces. 6, 1900470 (2019).

    Article  CAS  Google Scholar 

  10. W. Zhang, D. Jiang, M. Zhao, Y. Duan, X. Zhou, X. Yang, C. Shan, J. Qin, S. Gao, and Q. Liang, Piezo-phototronic effect for enhanced sensitivity and response range of ZnO thin film flexible UV photodetectors. J. Appl. Phys. 125, 024502 (2019).

    Article  CAS  Google Scholar 

  11. J. Cheng, Y. Zhang, and R. Guo, ZnO microtube ultraviolet detectors. J. Cryst. Growth. 310, 57 (2008).

    Article  CAS  Google Scholar 

  12. F. Masuoka, K. Ooba, H. Sasaki, H. Endo, S. Chiba, K. Maeda, H. Yoneyama, I. Niikura, and Y. Kashiwaba, Applicability of ZnO single crystals for ultraviolet sensors. Phys. Status Solidi C 3, 1238 (2006).

    Article  CAS  Google Scholar 

  13. D. Kumar, T. Gomes, N. Alves and J. Kettle, Understanding UV sensor performance in ZnO TFTs through the application of multivariate analysis, in 2018 Ieee Sens. 1 (2018).

  14. D. Gaspar, L. Pereira, K. Gehrke, B. Galler, E. Fortunato, and R. Martins, High mobility hydrogenated zinc oxide thin films. Sol. Energy Mater. Sol. Cells. 163, 255 (2017).

    Article  CAS  Google Scholar 

  15. A. Petrella, H. Deng, N. Roberts, and R.J.C.O.M. Lamb, Single-source chemical vapor deposition growth of ZnO thin films using Zn4O(CO2NEt2)6. Chem. Mater. 14, 4339 (2002).

    Article  CAS  Google Scholar 

  16. S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H.J.J.O.C.G. Shen, ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth. 225, 110 (2001).

    Article  CAS  Google Scholar 

  17. Z. Ju, C. Shan, D. Jiang, J. Zhang, B. Yao, D. Zhao, D. Shen, and X.J.A.P.L. Fan, MgxZn1−xO-based photodetectors covering the whole solar-blind spectrum range. Appl. Phys. Lett. 93, 173505 (2008).

    Article  CAS  Google Scholar 

  18. K. Liu, M. Sakurai, M. Liao, and M.J.T.J.o.P.C.C. Aono, Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 114, 19835 (2010).

    Article  CAS  Google Scholar 

  19. A. Bera, and D.J.A.P.L. Basak, Role of defects in the anomalous photoconductivity in ZnO nanowires. Appl. Phys. Lett. 94, 163119 (2009).

    Article  CAS  Google Scholar 

  20. S. Shaikh, V. Ganbavle, S. Mohite, and K. Rajpure, Chemical synthesis of pinecone like ZnO films for UV photodetector applications. Thin Solid Films 642, 232 (2017).

    Article  CAS  Google Scholar 

  21. R. Paul, R. Gayen, S. Biswas, S.V. Bhat, and R. Bhunia, Enhanced UV detection by transparent graphene oxide/ZnO composite thin films. RSC Adv. 6, 61661 (2016).

    Article  CAS  Google Scholar 

  22. R. Khokhra, B. Bharti, H.N. Lee, and R. Kumar, Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  23. T. AlZoubi, H. Qutaish, and S. Hamzawy, Enhanced UV-light detection based on ZnO nanowires/graphene oxide hybrid using cost-effective low temperature hydrothermal process. Opt. Mater. 77, 226 (2018).

    Article  CAS  Google Scholar 

  24. X. Zhang, Y. Qiu, D. Yang, B. Li, H. Zhang, and L. Hu, Enhancing performance of Ag-ZnO-Ag UV photodetector by piezo-phototronic effect. RSC Adv. 8, 15290 (2018).

    Article  CAS  Google Scholar 

  25. Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, and J. Shao, Low temperature annealed ZnO film UV photodetector with fast photoresponse. Sens. Actuators A 253, 173 (2017).

    Article  CAS  Google Scholar 

  26. U. Chaitra, D. Kekuda, and K.M. Rao, Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films. Ceram. Int. 43, 7115 (2017).

    Article  CAS  Google Scholar 

  27. L. Cabral, V. Lopez-Richard, J.L. Da Silva, G. Marques, M.P. Lima, Y. Onofre, M. Teodoro, and M. de Godoy, Insights into the nature of optically active defects of ZnO. J. Lumin. 227, 117536 (2020).

    Article  CAS  Google Scholar 

  28. J. Wang, R. Chen, L. Xiang, and S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44, 7357 (2018).

    Article  CAS  Google Scholar 

  29. Q. Zhang, G. Xie, H. Du, J. Yang, Y. Su, H. Tai, M. Xu, and K. Zhao, Adsorption behaviors of gas molecules on the surface of ZnO nanocrystals under UV irradiation. Sci. China Technol. Sci. 62, 2226 (2019).

    Article  CAS  Google Scholar 

  30. S. Brahma, C.W. Yang, C.H. Wu, F.M. Chang, T.J. Wu, C.S. Huang, and K.Y. Lo, The optical response of ZnO nanorods induced by oxygen chemisorption and desorption. Sens. Actuators B 259, 900 (2018).

    Article  CAS  Google Scholar 

  31. M.A. Khan, M.K. Singha, K.K. Nanda, and S.B. Krupanidhi, Defect and strain modulated highly efficient ZnO UV detector: Temperature and low-pressure dependent studies. Appl. Surf. Sci. 505, 144365 (2020).

    Article  CAS  Google Scholar 

  32. M.M.H. Farooqi, and R.K. Srivastava, Effect of annealing temperature on structural, photoluminescence and photoconductivity properties of ZnO thin film deposited on glass substrate by sol-gel spin coating method. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 90, 845 (2020).

    Article  Google Scholar 

  33. S. Alamdari, M.S. Ghamsari, H. Afarideh, A. Mohammadi, S. Geranmayeh, M.J. Tafreshi, and M.H. Ehsani, Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt. Mater. 92, 243 (2019).

    Article  CAS  Google Scholar 

  34. V.S. Kumar, and D. Kanjilal, Influence of post-deposition annealing on structural, optical and transport properties of nanocomposite ZnO-Ag thin films. Mater. Sci. Semicond. Process. 81, 22 (2018).

    Article  CAS  Google Scholar 

  35. M. Zheng, P. Gui, X. Wang, G. Zhang, J. Wan, H. Zhang, G. Fang, H. Wu, Q. Lin, and C. Liu, ZnO ultraviolet photodetectors with an extremely high detectivity and short response time. Appl. Surf. Sci. 481, 437 (2019).

    Article  CAS  Google Scholar 

  36. S.K. Shaikh, S.I. Inamdar, V.V. Ganbavle, and K.Y. Rajpure, Chemical bath deposited ZnO thin film based UV photoconductive detector. J. Alloys Compd. 664, 242 (2016).

    Article  CAS  Google Scholar 

  37. C. Rodwihok, S. Choopun, P. Ruankham, A. Gardchareon, S. Phadungdhitidhada, and D. Wongratanaphisan, UV sensing properties of ZnO nanowires/nanorods. Appl. Surf. Sci. 477, 159 (2019).

    Article  CAS  Google Scholar 

  38. P. Shewale, S. Lee, and Y. Yu, Effects of annealing temperature of spin-coated ZnO seed-layer on UV photo-sensing properties of PLD grown ZnO: Mg thin films. J. Alloys Compd. 774, 461 (2019).

    Article  CAS  Google Scholar 

  39. S. Singh, Y. Kumar, H. Kumar, S. Vyas, C. Periasamy, P. Chakrabarti, S. Jit, and S.H. Park, A study of hydrothermally grown ZnO nanorod-based metal-semiconductor-metal UV detectors on glass substrates. Nanomater. Nanotechnol. 7, 1847980417702144 (2017).

    Article  CAS  Google Scholar 

  40. C.Y. Tsay, S.T. Chen, and M.T. Fan, Solution-processed Mg-Substituted ZnO thin films for metal-semiconductor-metal visible-blind photodetectors. Coatings 9, 277 (2019).

    Article  CAS  Google Scholar 

  41. F.H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. J. Appl. Crystallogr. 8, 17 (1975).

    Article  Google Scholar 

  42. M. Taheri, F. Hajiesmaeilbaigi, A. Motamedi, and Y. Golian, Nonlinear optical response of gold/silicon nanocomposite prepared by consecutive laser ablation. Laser Phys. 25, 065901 (2015).

    Article  CAS  Google Scholar 

  43. V. Dhayal, S. Hashmi, U. Kumar, B. Choudhary, A. Kuznetsov, S. Dalela, S. Kumar, S. Kaya, S. Dolia, and P. Alvi, Spectroscopic studies, molecular structure optimization and investigation of structural and electrical properties of novel and biodegradable Chitosan-GO polymer nanocomposites. J. Mater. Sci. 55, 14829 (2020).

    Article  CAS  Google Scholar 

  44. K.K. Khichar, S.B. Dangi, V. Dhayal, U. Kumar, S.Z. Hashmi, V. Sadhu, B.L. Choudhary, S. Kumar, S. Kaya, and A.E. Kuznetsov, Structural, optical, and surface morphological studies of ethyl cellulose/graphene oxide nanocomposites. Polym. Compos. 41, 2792 (2020).

    Article  CAS  Google Scholar 

  45. A. Kumari, K. Kumari, F. Ahmed, A. Alshoaibi, P. Alvi, S. Dalela, M.M. Ahmad, R.N. Aljawfi, P. Dua, and A. Vij, Influence of Sm doping on structural, ferroelectric, electrical, optical and magnetic properties of BaTiO3. Vacuum 184, 109872 (2021).

    Article  CAS  Google Scholar 

  46. K. Punia, G. Lal, S. Dalela, S.N. Dolia, P.A. Alvi, S.K. Barbar, K.B. Modi, and S. Kumar, A comprehensive study on the impact of Gd substitution on structural, optical and magnetic properties of ZnO nanocrystals. J. Alloys Compd. 868, 159142 (2021).

    Article  CAS  Google Scholar 

  47. M. Goswami, N.C. Adhikary, and S. Bhattacharjee, Effect of annealing temperatures on the structural and optical properties of zinc oxide nanoparticles prepared by chemical precipitation method. Optik 158, 1006 (2018).

    Article  CAS  Google Scholar 

  48. M. Ismail, K. Taha, A. Modwi, and L. Khezami, ZnO nanoparticles: Surface and X-ray profile analysis. J. Ovonic Res. 14, 381 (2018).

    CAS  Google Scholar 

  49. M. Montero-Muñoz, J.E. Ramos-Ibarra, J. Rodríguez-Páez, G. Marques, M. Teodoro, and J. Coaquira, Growth and formation mechanism of shape-selective preparation of ZnO structures: correlation of structural, vibrational and optical properties. Phys. Chem. Chem Phys. 22, 7329 (2020).

    Article  Google Scholar 

  50. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, and Y. Zhu, Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg. Chem. 46, 6675 (2007).

    Article  CAS  Google Scholar 

  51. M. Taheri, F. Hajiesmaeilbaigi, and A. Motamedi, Optical and structural characteristics of silicon nanoparticles thin film prepared by laser ablation. Thin Solid Films 519, 7785 (2011).

    Article  CAS  Google Scholar 

  52. K. Kumari, R.N. Aljawfi, A. Chawla, R. Kumar, P. Alvi, A. Alshoaibi, A. Vij, F. Ahmed, M. Abu-Samak, and S. Kumar, Engineering the optical properties of Cu doped CeO2 NCs for application in white LED. Ceram. Int. 46, 7482 (2020).

    Article  CAS  Google Scholar 

  53. G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, B.L. Choudhary and S. Kumar, Structural, cation distribution, optical and magnetic properties of quaternary Co0.4+xZn0.6-xFe2O4 (x=0.0, 0.1 and 0.2) and Li doped quinary Co0.4+xZn0.5-xLi0.1Fe2O4 (x=0.0, 0.05 and 0.1) nanoferrites. J. Alloys Compd. 828, 154388 (2020).

  54. V. Dhayal, S. Hashmi, U. Kumar, B. Choudhary, S. Dalela, S. Dolia, and P. Alvi, Optical and electrical properties of biocompatible and novel (CS-GO) polymer nanocomposites. Opt. Quantum Electron. 53, 1 (2021).

    Article  CAS  Google Scholar 

  55. S. Kumar, M. Sharma, R.N. Aljawfi, K. Chae, R. Kumar, S. Dalela, A. Alshoaibi, F. Ahmed, and P. Alvi, Tailoring the structural, electronic structure and optical properties of Fe: SnO2 nanoparticles. J. Electron. Spectrosc. Relat. Phenom. 240, 146934 (2020).

    Article  CAS  Google Scholar 

  56. A.A. Shah, A. Parveen, P.A. Alvi, and A. Azam, Low temperature synthesis and effect of Co doping on structural, optical and dielectric properties of CuCrO2 hexagonal nanoplates. Ceram. Int. 46, 19827 (2020).

    Article  CAS  Google Scholar 

  57. J. Li, D. Yang, and X. Zhu, Effects of aging time and annealing temperature on structural and optical properties of sol-gel ZnO thin films. AIP Adv. 7, 065213 (2017).

    Article  CAS  Google Scholar 

  58. X. Chen, Q. Xie, and J. Li, Significantly improved photoluminescence properties of ZnO thin films by lithium doping. Ceram. Int. 46, 2309 (2020).

    Article  CAS  Google Scholar 

  59. A. Djurišić, Y. Leung, K. Tam, L. Ding, W. Ge, H. Chen, and S. Gwo, Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl. Phys. Lett. 88, 103107 (2006).

    Article  CAS  Google Scholar 

  60. B. Rahmati, I. Hajzadeh, M. Taheri, R. Karimzadeh, S. Mohajerzadeh, and S. Mohseni, Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles. Appl. Surf. Sci. 490, 165 (2019).

    Article  CAS  Google Scholar 

  61. S. Sharma, A. Tran, O. Nalamasu, and P.S. Dutta, Spin-coated ZnO thin films using ZnO nanocolloid. J. Electron. Mater. 35, 1237 (2006).

    Article  CAS  Google Scholar 

  62. Z. Xian-Li, and Z. Rong, Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods. Chin. Phys. B 24, 107703 (2015).

    Article  CAS  Google Scholar 

  63. V. Gavryushin, G. Raciukaitis, D. Juodzbalis, A. Kazlauskas, and V. Kubertavicius, Characterization of intrinsic and impurity deep levels in ZnSe and ZnO crystals by nonlinear spectroscopy. J. Cryst. Growth. 138, 924 (1994).

    Article  CAS  Google Scholar 

  64. J.K. Rajput, T.K. Pathak, V. Kumar, H. Swart, and L. Purohit, CdO: ZnO nanocomposite thin films for oxygen gas sensing at low temperature. Mater. Sci. Eng. B 228, 241 (2018).

    Article  CAS  Google Scholar 

  65. W. Kim, M. Choi, and K. Yong, Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B 209, 989 (2015).

    Article  CAS  Google Scholar 

  66. X. Wang, K. Liu, X. Chen, B. Li, M. Jiang, Z. Zhang, H. Zhao, and D. Shen, Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl. Mater. Interfaces. 9, 5574 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Taheri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, S., Taheri, M. Thermal Annealing Influences on the Photoresponse of Zinc Oxide Nanoparticle Films. J. Electron. Mater. 51, 2564–2575 (2022). https://doi.org/10.1007/s11664-022-09517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09517-7

Keywords

Navigation