Skip to main content
Log in

On the merits of Raman spectroscopy and thermogravimetric analysis to asses carbon nanotube structural modifications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Raman spectroscopy, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, and transmission electron microscopy are used to assess structural changes generated on the surface of multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes. Different levels of structural modifications are generated by the use of acidic oxidative treatments. It is found that Raman spectroscopy is a very powerful technique to assess structural modification of SWCNTs with initial low defect concentration. For MWCNTs grown by chemical vapor deposition, which already contain a high density of structural defects in their as-produced state, Raman spectroscopy is not a very sensitive tool to detect the generation of further defects or other structural modifications introduced through acidic treatments. For this later case, TGA is a sensitive technique to assess structural modifications on the nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Bayer MaterialScience. Leverkusen, Germany. www.baytubes.com.

References

  1. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 46, 833 (2008)

    Article  Google Scholar 

  2. R. Schönfelder, M.H. Rümmeli, W. Gruner, M. Löffler, J. Acker, V. Hoffmann, T. Gemming, B. Büchner, T. Pichler, Nanotechnology 18, 375601 (2007)

    Article  Google Scholar 

  3. F. Avilés, J.V. Cauich-Rodríguez, L. Moo-Tah, A. May-Pat, R. Vargas-Coronado, Carbon 47, 2970 (2009)

    Article  Google Scholar 

  4. I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon 43, 3124 (2005)

    Article  Google Scholar 

  5. R. Marega, G. Accorsi, M. Meneghetti, A. Parisini, M. Prato, D. Bonifazi, Carbon 47, 675 (2009)

    Article  Google Scholar 

  6. F. Avilés, A. Ponce, J.V. Cauich-Rodríguez, G.T. Martínez, Fuller. Nanotub. Carbon Nanostruct. 20, 49 (2012)

    Article  Google Scholar 

  7. M.E. Itkis, D.E. Perea, R. Jung, S. Niyogi, R.C. Haddon, Am. Chem. Soc. 127, 3439 (2005)

    Article  Google Scholar 

  8. B.I. Rosario-Castro, E.J. Contés, M. Lebrón-Colón, M.A. Meador, G. Sánchez-Pomales, C.R. Cabrera, Mater. Charact. 60, 1442 (2009)

    Article  Google Scholar 

  9. H. Li, N. Zhao, C. He, C. Shi, X. Du, J. Li, Mater. Sci. Eng. A 473, 355 (2008)

    Article  Google Scholar 

  10. S. Costa, B. Scheibe, M.H. Rümmeli, E. Borowiak-Palen, Phys. Status Solidi B 246, 2717 (2009)

    Article  ADS  Google Scholar 

  11. D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue, Nano Lett. 2, 615 (2002)

    Article  ADS  Google Scholar 

  12. A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Ünlü, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber, R. Saito, Phys. Rev. B 65, 155412 (2002)

    Article  ADS  Google Scholar 

  13. M.S. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, Trans. R. Soc. A 368, 5355 (2010)

    Article  ADS  Google Scholar 

  14. M.H. Rümmeli, M. Löffler, C. Kramberger, F. Simon, F. Fülöp, O. Jost, R. Schönfelder, A. Grüneis, T. Gemming, W. Pompe, B. Büchner, T. Pichler, J. Phys. Chem. C 111, 4094 (2007)

    Article  Google Scholar 

  15. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)

    Article  ADS  Google Scholar 

  16. A.C. Dillon, P.A. Parilla, J.L. Alleman, T. Gennett, K.M. Jones, J.M. Heben, Chem. Phys. Lett. 401, 522 (2005)

    Article  ADS  Google Scholar 

  17. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Synth. Met. 103, 2555 (1999)

    Article  Google Scholar 

  18. H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Eur. Phys. J. B 22, 307 (2001)

    Article  ADS  Google Scholar 

  19. A. Das, A.K. Sood, A. Govindaraj, A.M. Saitta, M. Lazzeri, F. Mauri, C.N.R. Rao, Phys. Rev. Lett. 99, 136803 (2007)

    Article  ADS  Google Scholar 

  20. J. Talla, D. Zhang, M. Kandadai, A. Avadhanula, S. Curran, Physica B 405, 4570 (2010)

    Article  ADS  Google Scholar 

  21. K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother, Carbon 49, 24 (2011)

    Article  Google Scholar 

  22. M.H. Rümmeli, E. Borowiak-Palen, T. Gemming, T. Pichler, M. Knupfer, M. Kalbác, L. Dunsch, O. Jost, S.R.P. Silva, W. Pompe, B. Büchner, Nano Lett. 5, 1209 (2005)

    Article  ADS  Google Scholar 

  23. U.J. Kim, C.A. Furtado, X. Liu, G. Chen, P.C. Eklund, Am. Chem. Soc. 127, 15437 (2005)

    Article  Google Scholar 

  24. U.J. Kim, X.M. Liu, C.A. Furtado, G. Chen, R. Saito, J. Jiang, M.S. Dresselhaus, P.C. Eklund, Phys. Rev. Lett. 95, 157402 (2005)

    Article  ADS  Google Scholar 

  25. H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, Y. Achiba, Carbon 38, 1691 (2000)

    Article  Google Scholar 

  26. J.H. Warner, F. Schäffel, G. Zhong, M.H. Rümmeli, B. Büchner, J. Robertson, G.A.D. Briggst, ACS Nano 3, 1557 (2009)

    Article  Google Scholar 

  27. M. Tang, H. Dou, K. Sun, Polymer 47, 728 (2006)

    Article  Google Scholar 

  28. Y.C. Chiang, W.H. Lin, Y.C. Chang, Appl. Surf. Sci. 257, 2401 (2011)

    Article  ADS  Google Scholar 

  29. P. Hou, C. Liu, Y. Tong, S. Xu, M. Liu, H. Cheng, J. Mater. Res. 16, 2526 (2001)

    Article  ADS  Google Scholar 

  30. K. Yang, H. Han, X. Pan, N. Chen, M. Gu, J. Phys. Chem. Solids 69, 222 (2008)

    Article  ADS  Google Scholar 

  31. A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodríguez-Macías, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, Appl. Phys. A 67, 29 (1998)

    Article  ADS  Google Scholar 

  32. D.K. Singh, P.K. Iyer, P.K. Giri, AIP Conf. Proc. 1147, 450 (2009)

    Article  ADS  Google Scholar 

  33. P. Corio, P.S. Santos, V.W. Brar, G.G. Samsonidze, S.G. Chou, M.S. Dresselhaus, Chem. Phys. Rev. Lett. 370, 675 (2003)

    Article  ADS  Google Scholar 

  34. H. Murphy, P. Papakonstantinou, T.I.T. Okpalugo, J. Vac. Sci. Technol. B 24, 715 (2006)

    Article  Google Scholar 

  35. M. Fouquet, H. Telg, J. Maultzsch, Y. Wu, B. Chandra, J. Hone, T.F. Heinz, C. Thomsen, Phys. Rev. Lett. 102, 075501 (2009)

    Article  ADS  Google Scholar 

  36. J.E. Proctor, M.P. Halsall, A. Ghandour, D.J. Dunstan, J. Phys. Chem. Solids 67, 2468 (2006)

    Article  ADS  Google Scholar 

  37. G.U. Sumanasekera, J.L. Allen, S.L. Fang, A.L. Loper, A.M. Rao, P.C. Eklund, Phys. Chem. B 103, 4292 (1999)

    Article  Google Scholar 

  38. A.C. Dillon, M. Yudasaka, M.S. Dresselhaus, J. Nanosci. Nanotechnol. 4, 691 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACYT project number 79609 of Dr. Avilés. R.S. thanks the Dr.-Helmut-Kraft-foundation and their administration GIZ GmbH for a fellowship that allowed his research stay at CICY Mexico. A.B. thanks the Alexander von Humboldt foundation and the BMBF. M.H.R. thanks the EU (ECEMP) and the Freistaat Sachsen. We are very grateful to Alejandro May Pat, Rossana F. Vargas-Coronado, and Daniella Pacheco (all from CICY) for their technical assistance, as well as to Dr. Iván González (CICY) for the Raman facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schönfelder.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 1.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönfelder, R., Avilés, F., Bachmatiuk, A. et al. On the merits of Raman spectroscopy and thermogravimetric analysis to asses carbon nanotube structural modifications. Appl. Phys. A 106, 843–852 (2012). https://doi.org/10.1007/s00339-012-6787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6787-8

Keywords

Navigation