Skip to main content
Log in

Growth fusion of submicron spherical boron carbide particles by repetitive pulsed laser irradiation in liquid media

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied the fabrication of B4C submicron particles by laser irradiation of boron nanoparticles dispersed in an organic solvent. The spherical shape of the formed particles suggests that instantaneous melt formation and solidification by quenching are involved in the particle-forming process. B4C particles gradually became larger with irradiation time at relatively low laser fluence (1.5 J cm−2 pulse−1) by repetitive melting and fusion of the particles, and the B4C yield increased with irradiation time to 90% for 600 min of irradiation. At higher laser fluences, the B4C yield decreased due to the explosive ablation of boron or B4C to form H3BO3, and thus only the larger B4C particles were observed. The dielectric constant of the organic solvent also affected the generated B4C particle size, probably due to the degree of particle aggregation. Thus, this technique can provide a new approach for fabricating spherical submicron particles of ceramic materials, such as carbides, with simple and safe processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.P. Patil, D.M. Phase, S.A. Kulkarni, S.V. Ghaisas, S.K. Kulkarni, S.M. Kanetkar, S.B. Ogale, V.G. Bhide, Phys. Rev. Lett. 58, 238 (1987)

    Article  ADS  Google Scholar 

  2. B.G. Ershov, A. Henglein, J. Phys. Chem. 97, 3434 (1993)

    Article  Google Scholar 

  3. J. Neddersen, G. Chumanov, T.M. Cotton, Appl. Spectrosc. 47, 1959 (1993)

    Article  ADS  Google Scholar 

  4. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 104, 8333 (2000)

    Article  Google Scholar 

  5. C.H. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, J. Phys. Chem. B 107, 9220 (2003)

    Article  Google Scholar 

  6. C.H. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, J. Mater. Res. 19, 1551 (2004)

    Article  ADS  Google Scholar 

  7. C.H. Liang, Y. Shimizu, M. Masuda, T. Sasaki, N. Koshizaki, Chem. Mater. 16, 963 (2004)

    Article  Google Scholar 

  8. S.I. Dolgaev, A.V. Simakin, V.V. Voronov, G.A. Shafeev, F. Bozon-Verduraz, Appl. Surf. Sci. 186, 546 (2002)

    Article  ADS  Google Scholar 

  9. L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, J. Nanopart. Res. 9, 1181 (2007)

    Article  Google Scholar 

  10. N. Takada, T. Sasaki, K. Sasaki, Appl. Phys. A 93, 833 (2008)

    Article  ADS  Google Scholar 

  11. Y. Ishikawa, Y. Shimizu, T. Sasaki, N. Koshizaki, Appl. Phys. Lett. 91, 161110 (2007)

    Article  ADS  Google Scholar 

  12. F. Mafuné, J.Y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 106, 8555 (2002)

    Article  Google Scholar 

  13. H. Usui, T. Sasaki, N. Koshizaki, J. Phys. Chem. B 110, 12890 (2006)

    Article  Google Scholar 

  14. K. Saitow, T. Yamamura, T. Minami, J. Phys. Chem. C 112, 18340 (2008)

    Google Scholar 

  15. M.W. Mortensen, P.G. Sorensen, O. Bjorkdahl, M.R. Jensen, H.J.G. Gundersen, T. Bjornholm, Appl. Radiat. Isot. 64, 315 (2006)

    Article  Google Scholar 

  16. A. Sinha, T. Mahata, B.P. Sharma, J. Nucl. Mater. 301, 165 (2002)

    Article  ADS  Google Scholar 

  17. K.E. Lee, C.O. Kim, M.J. Park, J.H. Kim, Phys. Status Solidi B 241, 1637 (2004)

    Article  ADS  Google Scholar 

  18. A.O. Sezer, J.I. Brand, Mater. Sci. Eng. B 79, 191 (2001)

    Article  Google Scholar 

  19. T. Ohyanagi, A. Miyashita, K. Murakami, O. Yoda, Jpn. J. Appl. Phys. Part 1 33, 2586 (1994)

    Article  Google Scholar 

  20. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 107, 12589 (2003)

    Article  Google Scholar 

  21. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  22. R.D. Lide, Handbook of Chemistry and Physics, 81st edn. (CRC, Boca Raton, 2000)

    Google Scholar 

  23. E.J.W. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)

    Google Scholar 

  24. K. Kimura, J. Colloid Interface Sci. 183, 607 (1996)

    Article  Google Scholar 

  25. T. Tsuji, T. Hamagami, T. Kawamura, J. Yamaki, M. Tsuji, Appl. Surf. Sci. 243, 214 (2005)

    Article  ADS  Google Scholar 

  26. V. Amendola, M. Meneghetti, J. Mater. Chem. 17, 4705 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Koshizaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, Y., Feng, Q. & Koshizaki, N. Growth fusion of submicron spherical boron carbide particles by repetitive pulsed laser irradiation in liquid media. Appl. Phys. A 99, 797–803 (2010). https://doi.org/10.1007/s00339-010-5745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5745-6

Keywords

Navigation