Skip to main content
Log in

A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An electrospinning process has been introduced to fabricate micro/nanofiber membranes having high porosity and specific surface area. When constantly/uniformly depositing the micro/nanofiber membrane on a target, the electrospun fibers require flushing out of the high charge and excessive remaining solvent built up, since these factors can interrupt the constant deposition rate of the electrospun fibers on substrates. These limitations can be overcome with a direct-electrospinning process, which can lower the charges of the electrospun fibers through a window of guiding electrodes and remaining solvent of the electrospun fibers during the spinning process by an air-blowing system. Because of the reduced charge accumulation of the electrospun fibers, the micro/nanofibers can be deposited on any kind of target, which may be a conductive or a non-conductive material. The fabricated membrane had a dramatically reduced charge, remaining solvent concentration, sufficient tensile modulus, and small pore-size distribution. To observe the possibility as a biomedical wound-dressing material, a bacteria-shielding test of the fabricated membrane was conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Hinrichs, E.J. Lommen, C.R.H. Widevuur, J. Feijen, J. Appl. Biomater. 2, 287 (1992)

    Google Scholar 

  2. L.S. Leipziger, V. Glushko, B. DiBernado, F. Shafaie, J. Noble, J. Nichols, O.M. Alvarez, J. Am. Acad. Dermatol. 12, 409 (1985)

    Google Scholar 

  3. M.S. Khil, D.I. Cha, H.Y. Kim, I.S. Kim, N. Bhattarai, J. Biomed. Mater. Res. Part B 67, 675 (2003)

    Google Scholar 

  4. D.S. Katti, K.W. Robinson, F.K. Ko, C.T. Laurencin, J. Biomed. Mater. Res. Part B 70, 286 (2004)

    Google Scholar 

  5. L. Wang, E. Khor, A. Wee, L.Y. Lim, J. Biomed. Mater. Res. Part B 63, 610 (2002)

    Google Scholar 

  6. I.V. Yannas, J.F. Burke, J. Biomed. Mater. Res. 14, 65 (1980)

    Google Scholar 

  7. I.V. Yannas, J.F. Burke, P.L. Gordon, J. Biomed. Mater. Res. 14, 107 (1980)

    Google Scholar 

  8. N. Dagalakis, J. Flink, P. Stasikelis, J.F. Burke, I.V. Yannas, J. Biomed. Mater. Res. 14, 511 (1980)

    Google Scholar 

  9. K. Matsida, S. Suzuki, N. Isshikin, K. Yoshioka, R. Wada, S.H. Hyun, Y. Ikada, Biomaterials 13, 119 (1992)

    Article  Google Scholar 

  10. M.C. Robson, B.D. Stenberg, J.D. Heggers, Clin. Plast. Surg. 3, 485 (1990)

    Google Scholar 

  11. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)

    Article  Google Scholar 

  12. E.-R. Kenawy, J.M. Layman, J.R. Watkins, G.L. Bowlin, J.A. Matthews, D.G. Simpson, G.E. Wnek, Biomaterials 24, 907 (2003)

    Article  Google Scholar 

  13. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J.H. Wendorff, Polym. Adv. Technol. 16, 276 (2005)

    Article  Google Scholar 

  14. J. Kameoka, H.G. Craighead, Appl. Phys. Lett. 83, 371 (2003)

    Article  ADS  Google Scholar 

  15. G.H. Kim, H.S. Han, J.H. Park, W.D. Kim, Polym. Eng. Sci. 47, 707 (2007)

    Article  Google Scholar 

  16. W.E. Teo, S. Ramakrishuna, Nanotechnology 17, R89 (2006)

    Article  ADS  Google Scholar 

  17. D.H. Reneker, I. Chun, Nanotechnology 7, 216 (1996)

    Article  ADS  Google Scholar 

  18. G.H. Kim, W.D. Kim, Appl. Phys. Lett. 89, 013111 (2006)

    Article  ADS  Google Scholar 

  19. Q. Qi, P. Hu, J. Xu, A. Wang, Biomacromolecules 7, 2327 (2006)

    Article  Google Scholar 

  20. W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, J. Biomed. Mater. Res. 60, 613 (2002)

    Article  Google Scholar 

  21. J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, J. Am. Chem. Soc. 125, 314 (2003)

    Article  Google Scholar 

  22. D. Adam, Nature 411, 236 (2001)

    Article  ADS  Google Scholar 

  23. G.G. Chase, D.H. Reneker, C. Shin, AIChE J. 51, 3109 (2005)

    Article  Google Scholar 

  24. P. Gibson, H. Schreuder-Gibson, D. Rivin, Colloid Surf. A 187–188, 469 (2001)

    Article  Google Scholar 

  25. M.G. McKee, J.M. Layman, M.P. Cashion, T.E. Long, Science 311, 353 (2006)

    Article  ADS  Google Scholar 

  26. J. Venugopal, L.L. Ma, S. Ramakrishuna, Tissue Eng. 11, 847 (2005)

    Article  Google Scholar 

  27. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1984)

    Google Scholar 

  28. G.H. Kim, Y.M. Shkel, J. Mater. Res. 19, 1164 (2004)

    Article  Google Scholar 

  29. I.C. Um, D. Fang, B.S. Hsiao, A. Okamoto, B. Chu, Biomacromolecules 5, 1428 (2004)

    Article  Google Scholar 

  30. V.E. Kalayci, P.K. Patra, Y.K. Kim, S.C. Ugbolue, Polymer 46, 7191 (2005)

    Article  Google Scholar 

  31. S.V. Fridrikh, J.H. Yu, M.P. Brenner, G.C. Rutledge, Phys. Rev. Lett. 90, 144502 (2003)

    Article  ADS  Google Scholar 

  32. M. Wang, H.J. Jin, D.L. Kaplan, G.C. Rutledge, Macromolecules 37, 6856 (2004)

    Article  Google Scholar 

  33. S.J. Hollister, Nat. Mater. 4, 518 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geun Hyung Kim.

Additional information

PACS

47.65.-d; 81.16.-c; 81.07.-b; 61.41.+e; 87.85.J-

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, G., Yoon, H. A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings. Appl. Phys. A 90, 389–394 (2008). https://doi.org/10.1007/s00339-007-4330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4330-0

Keywords

Navigation