Skip to main content
Log in

A Simple method to prepare multi-walled carbon nanotube/ZnO nanoparticle composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A multi-wall carbon nanotube (MWCNT)/ZnO nanoparticle composite is fabricated by the thermal decomposition of a mixture of Zn(NH3)4CO3, MWCNTs and polyvinyl pyrrolidone (PVP). From the infrared spectra of dried samples of Zn(NH3)4CO3, PVP, and the mixture of Zn(NH3)4CO3 and PVP, we show that there is a coordination interaction between the Zn of Zn(NH3)4CO3 and the carbonyl of PVP. Thermal decomposition of the mixture of Zn(NH3)4CO3 and PVP with MWCNTs results in the decomposition of Zn(NH3)4CO3 to ZnO nanoparticles which are well-dispersed on the outer walls of the MWCNTs. The results show that PVP can be used to control the ZnO nanoparticle size and its dispersion on the MWCNTs walls during decomposition. This method is favorable for large scale synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fu, Z. Liu, Y. Liu, B. Han, P. Hu, L. Cao, D. Zhu, Adv. Mater. 17, 217 (2005)

    Article  Google Scholar 

  2. K.C. Chin, A. Gohel, W.Z. Chen, H.I. Elim, W. Ji, G.L. Chong, C.H. Sow, A.T.S. Wee, Chem. Phys. Lett. 409, 85 (2005)

    Article  ADS  Google Scholar 

  3. J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, F.S. Sheu, Small 1, 560 (2005)

    Article  Google Scholar 

  4. A.P. Alivisatos, Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  5. Y.W. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y.J. Liu, W. Ji, J.Y. Lee, Z. Shen, A.T.S. Wee, J.T.L. Thong, C.H. Sow, Adv. Mater. 18, 587 (2006)

    Article  Google Scholar 

  6. S. Fullam, D. Cottel, H. Rensmo, D. Fitzmaurice, Adv. Mater. 12, 1430 (2000)

    Article  Google Scholar 

  7. M.N. Zhang, L. Su, L.Q. Mao, Carbon 44, 276 (2006)

    Article  Google Scholar 

  8. Y.P. Sun, W. Huang, Y. Lin, K. Fu, A. Kitaygorodskiy, L.A. Riddle, Y.J. Yu, D.L. Carrol, Chem. Mater. 13, 2864 (2001)

    Article  Google Scholar 

  9. Y.Y. Liu, J. Tang, X.Q. Chen, W. Chen, G.K.H. Pang, J.H. Xin, Carbon 44, 381 (2006)

    Article  Google Scholar 

  10. M. Endo, Y.A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M.S. Dresselhaus, Nano Lett. 3, 723 (2003)

    Article  Google Scholar 

  11. V. Tzitzios, V. Georgakilas, E. Oikonomou, M. Karakassides, D. Petridis, Carbon 44, 848 (2006)

    Article  Google Scholar 

  12. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, S. Bonnamy, Carbon 42, 1147 (2004)

    Article  Google Scholar 

  13. J. Sun, M. Iwasa, L. Gao, Q.H. Zhang, Carbon 42, 885 (2004)

    Article  Google Scholar 

  14. W.Q. Han, A. Zettl, Nano Lett. 3, 681 (2003)

    Article  Google Scholar 

  15. Q. Kuang, S.F. Li, Z.X. Xie, S.C. Lin, X.H. Zhang, S.Y. Xie, R.B. Huang, L.S. Zheng, Carbon 44, 1166 (2006)

    Article  Google Scholar 

  16. F.E. Osterloh, J.S. Martino, H. Hiramatsu, D.P. Hewitt, Nano Lett. 3, 125 (2003)

    Article  Google Scholar 

  17. W.A. de Heer, P. Poncharal, C. Berger, J. Gezo, Z. Song, J. Bettini, D. Ugarte, Science 307, 907 (2005)

    Article  ADS  Google Scholar 

  18. Z.L. Wang, J. Phys.: Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  19. D.L. Tao, W.Z. Qian, Y. Huang, F. Wei, J. Cryst. Growth 271, 353 (2004)

    Article  Google Scholar 

  20. Z.Y. Jiang, Z.X. Xie, X.H. Zhang, S.C. Lin, T. Xu, S.Y. Xie, R.B. Huang, L.S. Zheng, Adv. Mater. 16, 904 (2004)

    Article  Google Scholar 

  21. W.C.H. Choy, C.F. Guo, K.H. Pang, Y.P. Leung, G.Z. Wang, K.W. Cheah, J. Nanosci. Nanotechnol. 6, 802 (2006)

    Article  Google Scholar 

  22. A.B. Djurišić, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K. Gundu Rao, W.K. Chan, H.F. Lui, C. Surya, Adv. Funct. Mater. 14, 856 (2004)

    Article  Google Scholar 

  23. L. Mädler, W.J. Stark, S.E. Pratsinis, J. Appl. Phys. 92, 6537 (2002)

    Article  ADS  Google Scholar 

  24. J. Joo, S.G. Kwon, J.H. Yu, T. Hyeon, Adv. Mater. 17, 1837 (2005)

    Article  Google Scholar 

  25. C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Edit. 41, 1188 (2002)

    Article  Google Scholar 

  26. H. Kim, W. Sigmund, Appl. Phys. Lett. 81, 2085 (2002)

    Article  ADS  Google Scholar 

  27. S.Y. Bae, H.W. Seo, H.C. Choi, J. Park, J. Phys. Chem. B 108, 12318 (2004)

    Article  Google Scholar 

  28. J. Sun, L. Gao, M. Iwasa, Chem. Commun. 7, 832 (2004)

    Article  Google Scholar 

  29. M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y.H. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342, 265 (2001)

    Article  Google Scholar 

  30. W.Z. Qian, H. Yu, Q.F. Zhang, F. Wei, Z.W. Wang, Carbon 40, 2968 (2002)

    Article  Google Scholar 

  31. Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, J.M. Zhang, D.Y. Shen, J. Phys. Chem. B 108, 12877 (2004)

    Article  Google Scholar 

  32. P. Jiang, S.Y. Li, S.S. Xie, Y. Gao, L. Song, Chem. Eur. J. 10, 4817 (2004)

    Article  Google Scholar 

  33. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.C.H. Choy.

Additional information

PACS

61.10.Nz; 61.46.Fg; 61.46.Df; 78.30.-j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, G., Guo, J., Tao, D. et al. A Simple method to prepare multi-walled carbon nanotube/ZnO nanoparticle composites. Appl. Phys. A 89, 525–528 (2007). https://doi.org/10.1007/s00339-007-4098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4098-2

Keywords

Navigation