Skip to main content
Log in

Ultra-fast dynamics of coherent lattice and spin excitations at the Gd(0001) surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Gd(0001) surface is investigated by pump–probe experiments using femtosecond laser pulses at 740–860 nm wavelength. Employing optical second-harmonic generation, spin and lattice dynamics are separated through the symmetry of optical field contributions that are even and odd with respect to magnetization reversal. A coherent phonon–magnon mode at a frequency of 3 THz that is excited through the exchange-split surface state is observed in the time domain. A magneto-elastic phonon–magnon interaction based on spin–orbit coupling is weak for Gd and a modulation of the exchange interaction mediated by the lattice vibration is proposed as a microscopic interaction mechanism of this coupled mode. In parallel, electron–electron and electron–phonon interactions and their magnetic counterparts lead to incoherent dynamics of the electron, lattice, and spin subsystems. Variation of the optical wavelength shows that for longer wavelengths up to 860 nm the coherent mode dominates, while for shorter ones (≥740 nm) incoherent contributions prevail. This dependence indicates that selective depopulation of the occupied surface state component drives the coherent excitation. However, temperature-dependent studies show that the oscillation amplitude of even and odd contributions scales with the spin polarization of the surface state, suggesting that the spin dependence of the ion potentials contributes as well. Furthermore, the frequency of the coherent mode presents a blue shift with a delay of 0.17 THz/ps that saturates at the static frequency of the respective bulk phonon. This behavior is a consequence of equilibration of the screened ion potential at the surface subsequent to the intense laser excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haas CW, Callen HB (1963) Ferromagnetic relaxation and resonance line width. In: Rado GT, Suhl H (eds) Magnetism, vol 1. Academic, New York

    Google Scholar 

  2. Coqblin B (1977) The Electronic Structure of Rare-earth Metals and Alloys. Academic, London New York

    Google Scholar 

  3. Liu SH (1972) Phys. Rev. Lett. 29:793

    Article  ADS  Google Scholar 

  4. Colarieti-Trosti M, Simak SI, Ahuja R, Nordström L, Eriksson O, Åberg D, Edvardsson S, Brooks MSS (2003) Phys. Rev. Lett. 91:157201

    Article  ADS  Google Scholar 

  5. Chang YM, Xu L, Tom HWK (1997) Phys. Rev. Lett. 78:4649

    Article  ADS  Google Scholar 

  6. Zeiger HJ, Vidal J, Cheng TK, Ippen EP, Dresselhaus G, Dresselhaus MS (1992) Phys. Rev. B 45:768

    Article  ADS  Google Scholar 

  7. Garrett GA, Albrecht TF, Whitaker JF, Merlin R (1996) Phys. Rev. Lett. 77:3661

    Article  ADS  Google Scholar 

  8. Lobad AI, Taylor AJ (2001) Phys. Rev. B 64:180301

    Article  ADS  Google Scholar 

  9. Hase M, Kitajima M, Nakashima S, Mizoguchi K (2002) Phys. Rev. Lett. 88:067401

    Article  ADS  Google Scholar 

  10. Melnikov A, Radu I, Bovensiepen U, Krupin O, Starke K, Matthias E, Wolf M (2003) Phys. Rev. Lett. 91:227403

    Article  ADS  Google Scholar 

  11. Hase M, Ishioka K, Demsar J, Ushida K, Kitajima M (2005) Phys. Rev. B 71:184301

    Article  ADS  Google Scholar 

  12. Acremann Y, Back CH, Buess M, Portmann O, Vaterlaus A, Pescia D, Melchior H (2000) Science 290:492

    Article  ADS  Google Scholar 

  13. Gerrits T, van den Berg HAM, Hohlfeld J, Bär L, Rasing T (2002) Nature 418:509

    Article  ADS  Google Scholar 

  14. Weber H, Riesen S, Siegmann HC (2001) Science 291:1015

    Article  ADS  Google Scholar 

  15. Schumacher HW, Chappert C, Crozat P, Sousa RC, Freitas PP, Miltat J, Fassbender J, Hillebrands B (2003) Phys. Rev. Lett. 90:017201

    Article  ADS  Google Scholar 

  16. van Kampen M, Josza C, Kohlhepp JT, LeClair P, Lagae L, de Jonge WJM, Koopmans B (2002) Phys. Rev. Lett. 88:227201

    Article  ADS  Google Scholar 

  17. Bigot J-Y, Guidoni L, Halté V (2002) Ultrafast Phenomena XIII. In: Springer Ser. Chem. Phys. Springer, Berlin, p 398

    Google Scholar 

  18. Rehbein A, Wegener D, Kaindl G, Bauer A (2003) Phys. Rev. B 67:033403

    Article  ADS  Google Scholar 

  19. Pan R-P, Wei HD, Shen YR (1989) Phys. Rev. B 39:1229

    Article  ADS  Google Scholar 

  20. Kurz P, Bihlmayer G, Blügel S (2002) J. Phys.: Condens. Matter 14:6353

    Article  ADS  Google Scholar 

  21. Melnikov A, Krupin O, Bovensiepen U, Starke K, Wolf M, Matthias E (2002) Appl. Phys. B 74:723

    Article  ADS  Google Scholar 

  22. Maiti K, Malagoli MC, Dallmeyer A, Carbone C (2002) Phys. Rev. Lett. 88:167205

    Article  ADS  Google Scholar 

  23. Bode M, Getzlaff M, Heinze S, Pascal R, Wiesendanger R (1998) Appl. Phys. A 66:S121

    Article  ADS  Google Scholar 

  24. Arnold CS, Pappas DP (2000) Phys. Rev. Lett. 85:5202

    Article  ADS  Google Scholar 

  25. Melnikov A, Radu I, Bovensiepen U, Starke K, Wolf M, Matthias E (2005) J. Opt. Soc. Am. B 22:204

    Article  ADS  Google Scholar 

  26. Aspelmeier A, Gerhardter F, Baberschke K (1994) J. Magn. Magn. Mater. 132:22

    Article  ADS  Google Scholar 

  27. Hohlfeld J, Wellershoff S-S, Güdde J, Conrad U, Jähnke V, Matthias E (1999) Chem. Phys. 251:237

    Article  Google Scholar 

  28. Del Fatti N, Viosin C, Achermann M, Tzortzakis S, Christofilos D, Valleé F (2000) Phys. Rev. B 61:16956

    Article  ADS  Google Scholar 

  29. Lisowski M, Loukakos PA, Bovensiepen U, Stähler J, Gahl C, Wolf M (2004) Appl. Phys. A 78:165

    Article  ADS  Google Scholar 

  30. Note that a much weaker oscillating contribution has been observed also for the linear reflectivity, which is attributed to the coupling of the surface to the bulk, as discussed In: Ref. [34]

  31. Lisowski M, Loukakos PA, Melnikov A, Radu I, Ungureanu L, Wolf M, Bovensiepen U (2005) Phys. Rev. Lett., in print

  32. Vaterlaus A, Beutler T, Meier F (1991) Phys. Rev. Lett. 67:3314

    Article  ADS  Google Scholar 

  33. Melnikov A, Bovensiepen U, Radu I, Krupin O, Starke K, Matthias E, Wolf M (2004) J. Magn. Magn. Mater. 272–276:1001

    Article  ADS  Google Scholar 

  34. Bovensiepen U, Melnikov A, Radu I, Krupin O, Starke K, Wolf M, Matthias E (2004) Phys. Rev. B 69:235417

    Article  ADS  Google Scholar 

  35. Rao RR, Menon CS (1974) J. Phys. Chem. Solids 35:425

    Article  ADS  Google Scholar 

  36. Turek I, Kudronovsky J, Bihlmayer G, Blügel S (2003) J. Phys.: Condens. Matter 15:2771

    Article  ADS  Google Scholar 

  37. Farle M (1998) Rep. Prog. Phys. 61:755

    Article  ADS  Google Scholar 

  38. André G, Aspelmeier A, Schulz B, Farle M, Baberschke K (1995) Surf. Sci. 326:275

    Article  ADS  Google Scholar 

  39. Brown PJ, Roessli B, Smith JG, Neumann K-U, Ziebeck KRA (1996) J. Phys.: Condens. Matter 8:1996

    Google Scholar 

  40. Koehler WC, Child HR, Nicklow RM, Smith HG, Moon RM, Cable JW (1970) Phys. Rev. Lett. 24:16

    Article  ADS  Google Scholar 

  41. Ahuja R, Auluck S, Johansson B, Brooks MSS (1994) Phys. Rev. B 50:5147

    Article  ADS  Google Scholar 

  42. Cheng TK, Acioli LH, Vidal J, Zeiger HJ, Dresselhaus G, Dresselhaus MS, Ippen EP (1993) Appl. Phys. Lett. 62:1901

    Article  ADS  Google Scholar 

  43. Tangney P, Fahy S (1999) Phys. Rev. Lett. 82:4340

    Article  ADS  Google Scholar 

  44. Wende H (2004) Rep. Prog. Phys. 67:2105

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bovensiepen.

Additional information

PACS

78.47.+p; 63.22.+m; 63.20.Ls; 75.30.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bovensiepen, U. Ultra-fast dynamics of coherent lattice and spin excitations at the Gd(0001) surface. Appl. Phys. A 82, 395–402 (2006). https://doi.org/10.1007/s00339-005-3366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3366-2

Keywords

Navigation