Skip to main content
Log in

Tip-induced oxidative nano-machining of conducting diamond-like carbon (DLC)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrically conducting diamond-like carbon films have been nano-machined by local deposition of thermal energy at the tip-to-film point of contact; the process is implemented on an atomic force microscope platform. Features with linewidth resolution down to 20 nm have been demonstrated; lateral irregularities along edges were less than 5 nm, while the radius of curvature at the edges was less than 10 nm; and the slope of features was limited by the aspect ratio of the tip. The mechanism arises from prompt thermal oxidation by intermittent transfer of heat from an ohmically heated tip, where Fowler–Nordheim tunnelling is likely to play a role in completing an electrical circuit when the physical continuity of the thermal circuit is interrupted. When heat transfer is insufficient to ensure prompt oxidation, then formation of a metastable low-density carbon phase is found to take place. That phase will then, at room temperature and in the presence of oxygen, relax back to a ‘normal’ higher density phase over a period of one hour. The many desirable physico-chemical properties of diamond-like carbon, in combination with the good spatial resolution of local probe methodology, suggest that the outcomes could have significant implications for next-generation nano-machine and nano-templating technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, J. Bennett: Appl. Phys. Letts. 56, 2001 (1990)

    Article  ADS  Google Scholar 

  2. P. Avouris, T. Hertel, R. Martel: Appl. Phys. Letts. 71, 285 (1997)

    Article  ADS  Google Scholar 

  3. S. Myhra: Appl. Phys. A 76, 63 (2003)

    Article  ADS  Google Scholar 

  4. B. Bhushan: Proc. Instn. Mech. Engrs. 212, 1 (1998)

    Google Scholar 

  5. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig: IEEE Trans. Nanotech. 1, 39 (2002)

    Article  ADS  Google Scholar 

  6. L. Kong, L. Zhuang, S. Chou: IEEE Trans. Magn. 33, 3019 (1997)

    Article  ADS  Google Scholar 

  7. H. Shin, S. Hong, J. Moon, J.U. Jeon: Ultramicroscopy 91, 103 (2002)

    Article  Google Scholar 

  8. T. Mühl, H. Brückl, G. Weise, G. Reiss: J. Appl. Phys. 82, 5255 (1997)

    Article  ADS  Google Scholar 

  9. T. Mühl, H. Brückl, D. Kraut, J. Kretz, I. Mönch, G. Reiss: J. Vac. Sci. Technol. B 16, 3879 (1998)

    Article  Google Scholar 

  10. T. Mühl, J. Kretz, I. Mönch, C.M. Schneider: Appl. Phys. Letts. 76, 786 (2000).

    Article  ADS  Google Scholar 

  11. T.-H. Fang, C.-I. Weng, M.J. Chiang: Diamond Relat. Mater. 11, 1653 (2002)

    Article  ADS  Google Scholar 

  12. P.M. Campbell, E.S. Snow, P.J. MacMarr: Appl. Phys. Lett. 66, 1388 (1995)

    Article  ADS  Google Scholar 

  13. M. Maki, S. Shikama, M. Komori, Y. Sakaguchi, K. Sakuta, T. Kobayashi: Jpn. J. Appl. Phys. 31, 1446 (1992)

    Article  ADS  Google Scholar 

  14. M. Tachiki, T. Fukuda, K. Sugata, H. Seo, H. Umezawa, H. Kawarada: Jpn. J. Appl. Phys. 39, 4631 (2000)

    Article  ADS  Google Scholar 

  15. H. Seo, M. Tachiki, T. Banno, Y. Sumikawa, H. Umezawa, H. Kawarada: Jpn. J. Appl. Phys. 41, 4980 (2002)

    Article  ADS  Google Scholar 

  16. M. Tachiki, H. Seo, T. Banno, Y. Sumikawa, H. Umezawa, H. Kawarada: Appl. Phys. Lett. 81, 2854 (2002)

    Article  ADS  Google Scholar 

  17. B. Rezek, C. Sauerer, J.A. Garrido, C.E. Nebel, M. Stutzmann, E. Snedero, P. Bergonzo: Appl. Phys. Lett. 82, 3336 (2003)

    Article  ADS  Google Scholar 

  18. A. Crossley, C. Johnston, G.S. Watson, S. Myhra: J. Phys. D: Appl. Phys. 31, 1955 (1998)

    Article  ADS  Google Scholar 

  19. C. Moelle, S. Klose, F. Szucs, H.J. Fecht, C. Johnston, P.R. Chalker, M. Werner: Diamond Relat. Mater. 6, 839 (1997)

    Article  ADS  Google Scholar 

  20. P.R. Chalker, C. Johnston, J.A.A. Crossley, J. Amobrose, C.F. Ayres, R.E. Harper, I.M. Buckley-Golder, K. Kobashi: Diamond Relat. Mater. 2, 1100 (1993)

    Article  ADS  Google Scholar 

  21. A. Crossley, C. Johnston, I.M. Hutchings, S. Myhra, J.A.G. Temple, U. Wiklund: Thin Solid Films 414, 224 (2002)

    Article  ADS  Google Scholar 

  22. T. Tachibana, J.T. Glass: Diamond Relat. Mater. 2, 963 (1993)

    Article  ADS  Google Scholar 

  23. C.J. Sofield, A.M. Stoneham: Semicond. Sci. Technol. 10, 215 (1995)

    Article  ADS  Google Scholar 

  24. U. Staufer, L. Scandella, R. Wiesendanger: Z. Phys. B – Condensed Matter 77, 281 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Myhra.

Additional information

PACS

07.79.Lh; 81.16.Nd; 81.16.Pr; 81.16.Rf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myhra, S. Tip-induced oxidative nano-machining of conducting diamond-like carbon (DLC). Appl. Phys. A 80, 1097–1104 (2005). https://doi.org/10.1007/s00339-003-2370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2370-7

Keywords

Navigation