Skip to main content

Advertisement

Log in

The importance of biophysical context in understanding marine protected area outcomes for coral reef fish populations

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Multiuse marine protected areas (MPAs) that utilize a mosaic of no-take and sustainable use zones are an increasingly common tool for promoting fish population recovery while minimizing socioeconomic conflict. However, significant gaps remain in our understanding of the effects of multiuse MPAs on reef-fish populations, and how protection from fishing may interact with biophysical gradients to drive ecological outcomes. Here, we examine changes in fish assemblages inside and outside of two multiuse MPAs in Raja Ampat, Indonesia, over the first four to five years after their implementation. We use linear models to assess the impact of protection status, anthropogenic pressure, and biophysical gradients on changes in four biological metrics: abundance, biomass, mean size, and size-spectra. In addition, we use multivariate analyses to assess whether fish assemblages in protected and unprotected reefs diverged after MPA establishment. We find that both fish abundance and biomass were driven equally or more by benthic characteristics than protection status and that these environmental impacts were decoupled from the effects of MPAs. Contrary to expectations, increases in abundance were more pronounced in unprotected reefs, where fish assemblages diverged from protected reefs through an increase of herbivorous parrotfishes (Subfamily Scarinae) likely driven by increased algal production on hard-bottom reef areas. However, mean size and size-spectra improved in sustainable use zones compared to unprotected reefs, demonstrating that non-exclusionary management can provide ecological benefits, especially when combined with nearby no-take areas. Increased mean size was also associated with lower human population sizes, suggesting a strong influence of fishing pressure, which is mediated by MPAs. Our findings suggest that multiuse MPAs can quickly achieve some fisheries management objectives and that these effects are likely to increase over longer timescales. However, biophysical context can have significant impacts on reef-fish assemblages that are distinct from the effects of overlying fisheries management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237

    Article  Google Scholar 

  • Adey WH, Goertemiller T (1987) Coral reef algal turfs: master producers in nutrient poor seas. Phycologia 26:374–386

    Article  Google Scholar 

  • Ahmadia GN, Awaludinnoer A, Glew L, Pakiding F, Harris J, Hidayat N, Ihsan E, Mascia MB, Matualage D, Mohebalian P, Prada D, Purwanto P (2016) State of the bird’s head seascape MPA network report. world wildlife fund, conservation international, The Nature Conservancy, and Universitas Papua, Washington DC, Jakarta, and Manokwari

  • Allen GR, Erdmann MV (2009) Reef fishes of the bird’s head peninsula, West Papua, Indonesia. Check List 5:587–628

    Article  Google Scholar 

  • Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of caribbean coral reefs: region-wide declines in architectural complexity. Proc Biol Sci 276:3019–3025

    PubMed  PubMed Central  Google Scholar 

  • Andradi-Brown DA, Beer AJE, Colin L, Hastuti HCEI, Hidayat NI, Lindfield JS, Mitchell CR, Pada DN, Piesinger NM, Ahmadia GN (2021) Highly diverse mesophotic reef fish communities in Raja Ampat, West Papua. Coral Reefs 40:111–130

    Article  Google Scholar 

  • Ault TR Johnson CR (1998) Spatial variation in fish species richness on coral reefs habitat fragmentation and stochastic structuring processes Oikos:354-364

  • Barton K (2020) MuMIn: Multi-model inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn

  • Baskett ML, Barnett LAK (2015) The ecological and evolutionary consequences of marine reserves. Annu Rev Ecol Evol Syst 46:49–73

    Article  Google Scholar 

  • Bohnsack JA, Harper DE (1988) Length-weight relationships of selected marine reef fishes from the southeastern United States and the caribbean. NOAA technical memorandum NMFS-SEFC-215, Miami

  • Bozec YM, Kulbicki M, Laloë F, Mou-Tham G, Gascuel D (2011) Factors affecting the detection distances of reef fish: implications for visual counts. Mar Biol 158:969–981

    Article  Google Scholar 

  • Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington DC

    Google Scholar 

  • Cinner JE, Graham NAJ, MacNeil HC, MA, (2012) Global effects of local human population density and distance to markets on the condition of coral reef fisheries. Conserv Biol 27:453–458

    Article  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Claudet J, Osenberg CW, Benedetti-Cecchi L, Domenici P, Garcia-Charton JA, Pérez-Ruzafa Á, Badalamenti F, Bayle-Sempere J, Brito A, Bulleri F, Culioli JM, Dimech M, Falcón FJ, Guala I, Milazzo M, Sánchez-Meca J, Somerfield PJ, Stobart B, Vandeperre F, Valle C, Planes S (2008) Marine reserves: size and age do matter. Ecol Lett 11:481–489

    Article  PubMed  Google Scholar 

  • Clements KD, German DP, Piché J, Tribollet A, Choat JH (2017) Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol J Linn Soc Lond 120:729–751

    Google Scholar 

  • Coker DJ, Wilson SK, Pratchett MS (2014) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24:89–126

    Article  Google Scholar 

  • Crawley MJ (2012) The R book. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Cresswell AK, Langlois TJ, Wilson SK, Claudet J, Thomson DP, Renton M, Fulton CJ, Fisher R, Vanderklift MA, Babcock RC, Stuart-Smith RD, Haywood MDE, Depczynski M, Westera M, Ayling AM, Fitzpatrick B, Halford AR, McLean DL, Pillans RD, Cheal AJ, Tinkler P, Edgar GJ, Graham NAJ, Harvey ES, Holmes TH (2019) Disentangling the response of fishes to recreational fishing over 30 years within a fringing coral reef reserve network. Biol Conserv 237:514–524

    Article  Google Scholar 

  • Dames V, Bernard A, Floros C, Mann B, Speed C, Maggs J, Laing S, Meekan M, Olbers J (2020) Zonation and reef size significantly influence fish population structure in an established marine protected area, isimangaliso wetland park. South Africa Ocean Coast Manag 185:105040

    Article  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M, (2012) The 27–year decline of coral cover on the great barrier reef and its causes. Proc Natl Acad Sci USA 109:17995–17999

    Article  Google Scholar 

  • Denny CM, Babcock RC (2004) Do partial reserves protect reef fish assemblages? Biol Conserv 116:119–129

    Article  Google Scholar 

  • Edgar GJ, Stuart-Smith RD, Willis TJ, Kininmonth S, Baker SC, Banks S, Barrett NS, Becerro MA, Bernard ATF, Berkhout J, Buxton CD, Campbell SJ, Cooper AT, Davey M, Edgar SC, Försterra G, Galván DE, Irigoyen AJ, Kushner DJ, Moura R, Parnell PE, Shears NT, Soler G, Strain EMA, Thomson RJ (2014) Global conservation outcomes depend on marine protected areas with five key features. Nature 506:216–220

    Article  CAS  PubMed  Google Scholar 

  • Edwards AM (2020) ‘sizeSpectra’: fitting size spectra to ecological data using maximum likelihood. R package version 1.0.0.0. https://github.com/andrew-edwards/sizeSpectra

  • Edwards AM, Robinson JPW, Plank MF, Baum JK, Blanchard JL (2017) Testing and recommending methods for fitting size spectra to data. Methods Ecol Evol 8:57–67

    Article  Google Scholar 

  • Edwards AM, Robinson JPW, Blanchard JL, Baum JK, Plank MJ (2020) Accounting for the bin structure of data removes bias when fitting size spectra. Mar Ecol Prog Ser 636:19–33

    Article  Google Scholar 

  • Foale S, Adhuri D, Aliño P, Allison EH, Andrew N, Cohen P, Evans L, Fabinyi M, Fidelman P, Gregory C, Stacey N (2013) Food security and the Coral Triangle initiative. Mar Policy 38:174–183

    Article  Google Scholar 

  • Ford AK, Razak TB, Hakim AR, Iqbal M, Estradivari, Rusandi A, Hakim A, Sapari A, Amkieltiela, Fauzi MN, Krueck NC, Lazuardi ME, McGowan J, Andradi-Brown DA (2020) Marine protected area zoning. In: Kementerian Kelautan dan Perikanan (ed) Management of marine protected areas in Indonesia: status and challenges. Kementerian Kelautan dan Perikanan and Yayasan WWF Indonesia, Jakarta, Indonesia, pp 153–170. https://doi.org/10.6084/m9.figshare.13341476

  • Fox J, Weisberg S (2019) An R Companion to applied regression, 3rd edn. Sage, Thousand Oaks

    Google Scholar 

  • Friedlander AM, Brown EK, Jokiel PL, Smith WR, Rodgers KS (2003) Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs 22:291–305

    Article  Google Scholar 

  • Froese R, Pauly D (eds). 2019. Fishbase. World Wide Web electronic publication. www.fishbase.org.

  • Fulton CJ, Bellwood DR, Wainwright PC (2005) Wave energy and swimming performance shape coral reef fish assemblages. Proc Biol Sci 272:827–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Graham NAJ, Dulvy NK, Jennings S, Polunin NVC (2005) Size-spectra as indicators of the effects of fishing on coral reef fish assemblages. Coral Reefs 24:118–124

    Article  Google Scholar 

  • Graham NAJ, Ainsworth TD, Baird AH, Ban NC, Bay LK, Cinner JE, De Freitas DM, DM, Diaz-Pulido G, Dornelas M, Dunn SR, Fidelman PIJ, Foret S, Good TC, Kool J, Mallela J, Penin L, Pratchett MS, and Williamson DH, (2011) From microbes to people: tractable benefits of no-take areas for coral reefs. Oceanogr Mar Biol 49:105–135

    Google Scholar 

  • Graham NAJ, Robinson JPW, Smith SE, Govinden R, Gendron G, Wilson SK (2020) Changing role of coral reef marine reserves in a warming climate. Nat Commun 11:1–8

    Google Scholar 

  • Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MG, Mumby PJ, White AT (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev 90:1215–1247

    Article  PubMed  Google Scholar 

  • Greene LE, Alevizon WS (1989) Comparative accuracies of visual assessment methods for coral reef fishes. Bull Mar Sci 44:899–912

    Google Scholar 

  • Halford AR, Perret J (2009) Patterns of recovery in catastrophically disturbed reef fish assemblages. Mar Ecol Prog Ser 383:261–272

    Article  Google Scholar 

  • Halpern BS (2003) The impact of marine reserves: do reserves work and does reserve size matter? Ecol Appl 13:S117–S137

    Article  Google Scholar 

  • Hamilton SL, Caselle JE, Malone DP, Carr MH (2010) Incorporating biogeography into evaluations of the channel islands marine reserve network. Proc Natl Acad Sci USA 107:18272–18277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harborne AR, Mumby PJ, Kappel CV, Dahlgren CP, Micheli F, Holmes KE, Sanchirico JN, Broad K, Elliott IA, Brumbaugh DR (2008) Reserve effects and natural variation in coral reef communities. J Appl Ecol 45:1010–1018

    Article  Google Scholar 

  • Harborne AR, Rogers A, Bozec YM, Mumby PJ (2017) Multiple stressors and the functioning of coral reefs. Annu Rev Mar Sci 9:5.1–5.24

  • Harborne AR, Green AL, Peterson NA, Beger M, Golbuu Y, Houk P, Spalding MD, Taylor BM, Terk E, Treml EA, Victor S, Vigliola L, Williams ID, Wolff NH, zu Ermgassen PSE, Mumby PJ, (2018) Modelling and mapping regional-scale patterns of fishing impact and fish stocks to support coral-reef management in Micronesia. Divers Distrib 24:1729–1743

    Article  Google Scholar 

  • Hartig, F (2020) DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. R package 0.3.3.0. https://CRAN.R-project.org/package=DHARMa

  • Hempson TN, Graham NA, MacNeil MA, Williamson DH, Jones GP, Almany GR (2017) Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol Evol 7:2626–2635

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JB, Kleypas J, Van De Leemput IA, Lough JM, Morrison TH, Palumbi SR (2017) Coral reefs in the Anthropocene. Nature 546:82–90

    Article  CAS  PubMed  Google Scholar 

  • IOC, IHO, BODC. (2003) "Centenary edition of the GEBCO digital atlas", published on 509 CDROM on behalf of the intergovernmental oceanographic Commission and the international 510 hydrographic organization as part of the general bathymetric chart of the oceans; British 511 Oceanographic Data Centre, Liverpool

  • Jack-Kadioglu T, Pusparini NKS, Lazuardi ME, Estradivari, Rukma A, Campbell SJ, Jakub R, Claborn K, Glew L, Rusandi A, Hakim A, Sapari A, Andradi-Brown DA (2020) Community involvement in Marine protected area governance. In: Kementerian Kelautan dan Perikanan (ed) Management of marine protected areas in Indonesia: status and challenges. Kementerian Kelautan dan Perikanan and Yayasan WWF Indonesia, Jakarta, Indonesia, pp 23–55. https://doi.org/10.6084/m9.figshare.13341476.

  • Lazuardi ME, Razak TB, Jack-Kadioglu T, Iqbal M, Rusandi A, Hakim A, Sapari A, Andradi-Brown DA, Claborn K, Veverka L, Estradivari (2020) Formal marine protected area governance structure. In: Kementerian Kelautan dan Perikanan (ed), Management of marine protected areas in Indonesia: status and challenges. Kementerian Kelautan dan Perikanan and Yayasan WWF Indonesia, Jakarta, Indonesia, pp 3–20. https://doi.org/10.6084/m9.figshare.13341476.

  • Lester S, Halpern B (2008) Biological responses in marine no-take reserves versus partially protected areas. Mar Ecol Prog Ser 367:49–56

    Article  Google Scholar 

  • Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco K, Rutttenberg J, Gaines SD, Airame S, Warner RR (2009) Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 384:33–46

    Article  Google Scholar 

  • Lokrantz J, Nyström M, Thyresson M, Johansson C (2008) The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27:967–974

    Article  Google Scholar 

  • Lüdecke D (2019) ‘Performance’: assessment of regression models performance. R package 0.2.0. https://CRAN.R-project.org/package=performance.

  • MacNeil MA, Graham NAJ, Cinner JE, Wilson SK, Williams ID, Maina J, Newman S, Friedlander AM, Jupiter S, Polunin NVC, McClanahan TR (2015) Recovery potential of the world’s coral reef fishes. Nature 520:341–344

    Article  CAS  PubMed  Google Scholar 

  • Mangubhai S, Erdmann MV, Wilson JR, Huffard CL, Ballamu F, Hidayat NI, Hitipeuw C, Lazuardi ME, Pada D, Purba G, Rotinsulu C, Rumenta L, Sumolang K, Wen W (2012) Papuan bird’s head seascape: emerging threats and challenges in the global center of marine biodiversity. Mar Pollut Bull 64:2279–2295

    Article  CAS  PubMed  Google Scholar 

  • Marshall DJ, Gaines S, Warner R, Barneche DR, Bode M (2019) Underestimating the benefits of marine protected areas for the replenishment of fished populations. Front Ecol Environ 17:407–413

    Article  Google Scholar 

  • McCook L, Jompa J, Diaz-Pulido G (2001) Competition between corals and algae on coral reefs: a review of evidence and mechanisms. Coral Reefs 19:400–417

    Article  Google Scholar 

  • McLeod E, Szuster B, Salm R (2009) Sasi and marine conservation in raja ampat, Indonesia. Coast Manage 37:656–676

    Article  Google Scholar 

  • Micheli F, Halpern BS, Botsford LW, Warner RR (2004) Trajectories and correlates of community change in no-take marine reserves. Ecol Appl 14:1709–1723

    Article  Google Scholar 

  • Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233

    Article  Google Scholar 

  • Mora C, Aburto-Oropeza O, Bocos AA, Ayotte PM, Banks S, Bauman AG, Beger M, Bessudo S, Booth DJ, Brokovich E, Brooks A, Chabanet P, Cinner JE, Cortés J, Cruz-Motta JJ, Magaña AC, DeMartini EE, Edgar GJ, Feary DA, Ferse SCA, Friedlander AM, Gaston KJ, Gough C, Graham NAJ, Green A, Guzman H, Hardt M, Kulbicki M, Letourneur T, Pérez AL, Loreau M, Loya Y, Martinez C, Mascareñas-Osorio I, Morove T, Nadon MO, Nakamura Y, Paredes G, Polunin NVC, Pratchett MS, Bonilla HR, Rivera F, Sala E, Sandin SA, Soler G, Stuart-Smith R, Tessier E, Tittensor DP, Tupper M, Usseglio P, Vigliola L, Wantiez L, Williams I, Wilson SK, Zapata FA (2011) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9:e1000606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais RA, Depczynski M, Fulton C, Marnane M, Narvaez P, Huertas V, Brandl SJ, Bellwood DR (2020) Severe coral loss shifts energetic dynamics on a coral reef. Funct Ecol 2020:1–12

    Google Scholar 

  • Mosquera I, Côté IM, Jennings S, Reynolds JD (2000) Conservation benefits of marine reserves for fish populations. Anim Conserv 3:321–332

    Article  Google Scholar 

  • Muhajir, Purwanto, Mangubhai S, Wilson J, Ardiwijaya R (2012) Marine resource use in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2006–2011. The Nature Conservancy, Indo-Pacific Division, Bali

  • Mumby PJ, Harborne AR (2010) Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5:e8657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    Article  CAS  PubMed  Google Scholar 

  • Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98–101

    Article  CAS  PubMed  Google Scholar 

  • Oldekop JA, Holmes G, Harris WE, Evans KL (2016) A global assessment of the social and conservation outcomes of protected areas. Conserv Biol 30:133–141

    Article  CAS  PubMed  Google Scholar 

  • Polunin NVC, Roberts CM (1993) Greater biomass and value of target coral reef fishes in two small Caribbean marine reserves. Mar Ecol Prog Ser 100:167–176

    Article  Google Scholar 

  • Purwanto P, Andradi-Brown DA, Matualage D, Rumengan I, Awaludinnoer Pada D, Hidayat NI, Fox HE, Fox M, Mangubhai S, Hamid L, Lazuardi ME, Mambrasar R, Maulana N, Mulyadi Tuharea S, Pakiding F, Ahmadia GN (2021) The Bird's Head Seascape marine protected area network—preventing biodiversity and ecosystem service loss amidst rapid change in Papua, Indonesia. Conserv Sci Pract 2021:e393. https://doi.org/10.1111/csp2.393

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. https://www.r-project.org.

  • Rees MJ, Knott NA, Davis AR (2018a) Habitat and seascape patterns drive spatial variability in temperate fish assemblages: implications for marine protected areas. Mar Ecol Prog Ser 607:171–186

    Article  Google Scholar 

  • Rees MJ, Knott NA, Neilson J, Linklater M, Osterloh I, Jordan A, Davis AR (2018b) Accounting for habitat structural complexity improves the assessment of performance in no-take marine reserves. Biol Cons 224:100–110

    Article  Google Scholar 

  • Richards BL, Williams ID, Vetter OJ, Williams GJ (2012) Environmental factors affecting large-bodied coral reef fish assemblages in the mariana archipelago. PLoS ONE 7:e31374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson EA, Kaiser MJ, Edwards-Jones GA, Possingham HP (2006) Sensitivity of marine-reserve design to the spatial resolution of socioeconomic data. Conserv Biol 20:1191–1202

    Article  PubMed  Google Scholar 

  • Robinson JPW, Williams ED, Edwards AM, McPherson J, Yeager L, Vigliola L, Brainard RE, Baum JK (2017) Fishing degrades size structure of coral reef fish communities. Glob Chang Biol 23:1009–1022

    Article  PubMed  Google Scholar 

  • Robinson JPW, Wilson SK, Jennings S, Graham NA (2019a) Thermal stress induces persistently altered coral reef fish assemblages. Glob Chang Biol 25:2739–2750

    Article  PubMed  Google Scholar 

  • Robinson JPW, Wilson SK, Robinson J, Gerry C, Lucas J, Assan C, Govinden R, Jennings S, Graham NA (2019b) Productive instability of coral reef fisheries after climate-driven regime shifts. Nat Ecol Evol 3:183–190

    Article  PubMed  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005

    Article  CAS  PubMed  Google Scholar 

  • Russ GR (2002) Yet another review of marine reserves as fishery management tools. In: Sale PF (eds) coral reef fishes, dynamics, and diversity in complex ecosystems Academic Press, San Diego. (pp. 421–443)

  • Russ GR (2003) Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22:63–67

    Article  Google Scholar 

  • Russ GR, Alcala AC (2011) Enhanced biodiversity beyond marine reserve boundaries: the cup spilleth over. Ecol Appl 21:241–250

    Article  PubMed  Google Scholar 

  • Russ GR, Questel SL, Rizzari JR, Alcala AC (2015a) The parrotfish–coral relationship: refuting the ubiquity of a prevailing paradigm. Mar Biol 162:2029–2045

    Article  Google Scholar 

  • Russ GR, Miller KI, Rizzari JR, Alcala AC (2015b) Long-term no-take marine resrve and benthic habitat effects on coral reef fishes. Mar Ecol Prog Ser 529:233–248

    Article  Google Scholar 

  • Russ GR, Payne CS, Bergseth BJ, Rizzari JR, Abesamis RA, Alcala AC (2018) Decadal-scale response of detritivorous surgeonfishes (family Acanthuridae) to no-take marine reserve protection and changes in benthic habitat. J Fish Biol 93:887–900

    Article  PubMed  Google Scholar 

  • Russ GR, Rizzari JR, Abesamis RA, Alcala AC (2020) Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol Appl 2020:e02224

    Google Scholar 

  • Sale PF, Ludsin SA (2003) The extent and spatial scale of connectivity among reef fish populations: implications for marine protected areas designated for fisheries enhancement. Gulf Caribb Res 14:119–128

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Shantz AA, Ladd MC, Burkepile DE (2020) Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. Ecol Monogr 90:e01403

    Article  Google Scholar 

  • Tebbett SB, Bellwood DR (2019) Algal turf sediments on coral reefs: what’s known and what’s next. Mar Pollut Bull 149:110542

    Article  CAS  PubMed  Google Scholar 

  • Tootell JS, Steele MA (2016) Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181:13–24

    Article  PubMed  Google Scholar 

  • Vallès H, Oxenford HA (2014) Parrotfish size: a simple yet useful alternative indicator of fishing effects on Caribbean reefs? PLoS ONE 9:e86291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallès H, Gill D, Oxenford HA (2015) Parrotfish size as a useful indicator of fishing effects in a small Caribbean Island. Coral Reefs 34:789–801

    Article  Google Scholar 

  • Veron JEN, Devantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith M, Peterson N (2009) Delineating the coral triangle. Galaxea, Journal of Coral Reef Studies 11:91–100

    Article  Google Scholar 

  • White EP, Enquist BJ, Green JL (2007) Relationships between body size and abundance in ecology. Trends Ecol Evol 22:323–330

    Article  PubMed  Google Scholar 

  • Wilkinson C (2008) Status of coral reefs of the world: 2008. global coral reef monitoring network and reef and rainforest research centre, Townsville

    Google Scholar 

  • Williams ID, Baum JK, Heenan A, Hanson KM, Nadon MO, Brainard RE (2015) Human, oceanographic and habitat drivers of central and western pacific coral reef fish assemblages. PLoS ONE 10:e0120516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NV (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234

    Article  Google Scholar 

  • Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NA (2019) Coral reef ecosystem services in the Anthropocene. Funct Ecol 33:1023–1034

    Google Scholar 

  • Yarlett RT, Perry CT, Wilson RW, Harborne AR (2020) Inter-habitat variability in parrotfish bioerosion rates and grazing pressure on an Indian Ocean reef platform. Diversity 12:381

    Article  Google Scholar 

  • Yeager LA, Marchand P, Gill DA, Baum JK, McPherson JM (2017) Marine socio-environmental covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98:1976

    Article  PubMed  Google Scholar 

  • Zupan M, Fragkopoulou E, Claudet J, ErziniHarta e Costa B, Gonçalves EJ, K (2018) Marine partially protected areas: drivers of ecological effectiveness. Font Ecol Environ 16:381–387

    Article  Google Scholar 

  • Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7:636–645

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Alliance for Conservation Evidence and Sustainability (ACES). We thank Conservation International, The Nature Conservancy, the UPTD-BLUD R4 ecological monitoring team, and the Walton Family Foundation. This is contribution #253 from the Coastlines and Oceans Division in the Institute of Environment at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Y. Fidler.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Andrew Hoey

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidler, R.Y., Andradi-Brown, D.A., Awaludinnoer et al. The importance of biophysical context in understanding marine protected area outcomes for coral reef fish populations. Coral Reefs 40, 791–805 (2021). https://doi.org/10.1007/s00338-021-02085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02085-y

Keywords

Navigation