Skip to main content

Advertisement

Log in

Oxygen: the universal currency on coral reefs

  • Review
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral reefs are suffering unprecedented declines worldwide. Most studies focus on stressors such as rising temperatures, nutrient pollution, overfishing, and ocean acidification as drivers of this degradation. However, recent mass mortality events associated with low oxygen on coral reefs indicate that oxygen is a critical factor that can be limiting in reef environments. Here, we present evidence that integrates across disciplines and perspectives to reveal how natural and anthropogenic factors drive variation in oxygen at multiple scales on coral reefs. This variation, in turn, limits essential processes such as productivity, respiration, and calcification on reefs and often plays a role in the outcome of interactions between corals and their competitors, pathogens, and mutualists. Moreover, the apparent effects of temperature, eutrophication, acidification, and other stressors on corals are commonly mediated by oxygen. As a consequence, the imprint of oxygen variation is evident in many patterns including reef biodiversity, coral bleaching, colony morphology, and fish behavior. We suggest that the structure and dynamics of coral reefs can be fully understood only by considering the ubiquitous role of oxygen, and we identify critical areas of future oxygen research to guide the study and management of coral reefs in a changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abram NJ, Gagan MK, McCulloch MT, Chappell J, Hantoro WS (2003) Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science 301:952–955

    Article  CAS  PubMed  Google Scholar 

  • Adjeroud M, Andréfouët S, Payri C (2001) Mass mortality of macrobenthic communities in the lagoon of Hikueru atoll (French Polynesia). Coral Reefs 19:287–291

    Article  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003a) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    Article  CAS  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003b) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Bio Ecol 142:419–426

    Article  CAS  Google Scholar 

  • Al-Horani FA, Tambutté É, Allemand D (2007) Dark calcification and the daily rhythm of calcification in the scleractinian coral, Galaxea fascicularis. Coral Reefs 26:531–538

    Article  Google Scholar 

  • Albert S, O’Neil JM, Udy JW, Ahern KS, O’Sullivan CM, Dennison WC (2005) Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors. Mar Pollut Bull 51:428–437

    Article  CAS  PubMed  Google Scholar 

  • Albert S, Grinham A, Dunbabin M, Bird B, Moore BR, Jimuru M, Kwatelae A, Skinner M (2011) Preliminary assessment of a large fish kill in Marovo Lagoon, Solomon Islands. University of Queensland, Brisbane

    Google Scholar 

  • Albert S, Dunbabin M, Skinner M (2012) Benthic Shift in a Solomon Island’s lagoon: corals to cyanobacteria. In: Proceedings of the 12th International Coral Reef Symposium. Cairns, Australia

  • Allemand D, Tambutté É, Zoccola D, Tambutté S (2010) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 113–119

    Google Scholar 

  • Altieri AH, Gedan KB (2015) Climate change and dead zones. Glob Chang Biol 21:1395–1406

    Article  PubMed  Google Scholar 

  • Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N (2017) Tropical dead zones and mass mortalities on coral reefs. Proc Natl Acad Sci U S A 114:3660–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altieri AH, Nelson HR, Gedan KB (in review) Ocean deoxygenation: everyone’s problem – Causes, impacts, consequences and solutions. IUCN, Gland, Switzerland

  • Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5:321–348

    Article  PubMed  Google Scholar 

  • Andréfouët S, Van Wynsberge S, Gaertner-Mazouni N, Menkes C, Gilbert A, Remoissenet G (2013) Climate variability and massive mortalities challenge giant clam conservation and management efforts in French Polynesia atolls. Biol Conserv 160:190–199

    Article  Google Scholar 

  • Andréfouët S, Dutheil C, Menkes CE, Bador M, Lengaigne M (2015) Mass mortality events in atoll lagoons: environmental control and increased future vulnerability. Glob Chang Biol 21:195–205

    Article  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Baas Becking LGM (1951) Notes on some Cyanophyceae of the Pacific region. Proc K Ned Akad Wet C 54:213–225

    Google Scholar 

  • Banner AH (1968) A fresh-water” kill” on the coral reefs of Hawaii. Hawaii Institute of Marine Biology, University of Hawaii, Honolulu, HI

    Google Scholar 

  • Barott KL, Rohwer FL (2012) Unseen players shape benthic competition on coral reefs. Trends Microbiol 20:621–628

    Article  CAS  PubMed  Google Scholar 

  • Barott K, Smith J, Dinsdale E, Hatay M, Sandin S, Rohwer F (2009) Hyperspectral and physiological analyses of coral–algal interactions. PLoS One 4:e8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJ, Smith JE, Rohwer FL (2011) Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc R Soc Lond B Biol Sci 279:1654–1655

    Google Scholar 

  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A 110:1387–1392

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell GW, Eggleston DB, Wolcott TG (2003) Behavioral responses of free-ranging blue crabs to episodic hypoxia. II. Feeding. Mar Ecol Prog Ser 259:227–235

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Best MA, Wither AW, Coates S (2007) Dissolved oxygen as a physico-chemical supporting element in the Water Framework Directive. Mar Pollut Bull 55:53–64

    Article  CAS  PubMed  Google Scholar 

  • Bowman TE, Lancaster LJ (1965) A bloom of the planktonic blue-green alga, Trichodesmium erythraeum, in the Tonga Islands. Limnol and Oceanogr 10:291–293

    Article  Google Scholar 

  • Bozinovic F, Pörtner HO (2015) Physiological ecology meets climate change. Ecol Evol 5:1025–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Brocke HJ, Wenzhoefer F, De Beer D, Mueller B, Van Duyl FC, Nugues MM (2015) High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci Rep 5:8852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AL, Carpenter RC (2013) Water-flow mediated oxygen dynamics within massive Porites-algal turf interactions. Mar Ecol Prog Ser 490:1–10

    Article  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2:e711

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlton RG, Richardson LL (1995) Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: black band disease of corals. FEMS Microbiol Ecol 18:155–162

    Article  CAS  Google Scholar 

  • Chalker BE, Taylor DL (1975) Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond B Biol Sci 190:323–331

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain JA Jr, Graus RR (1975) Water flow and hydromechanical adaptations of branched reef corals. Bull Mar Sci 25:112–125

    Google Scholar 

  • Charpy L, Casareto BE, Langlade MJ, Suzuki Y (2012) Cyanobacteria in coral reef ecosystems: a review. J Mar Biol 2012:259571

    Article  Google Scholar 

  • Cinner JE, Huchery C, MacNeil MA, Graham NA, McClanahan TR, Maina J, Maire E, Kittinger JN, Hicks CC, Mora C, Allison EH, D’Agata S, Hoey A, Feary DA, Crowder L, Williams ID, Kulbicki M, Vigliola L, Wantiez L, Edgar G, Stuart-Smith RD, Sandin SA, Green AL, Hardt MJ, Beger M, Friedlander A, Campbell SJ, Holmes KE, Wilson SK, Brokovich E, Brooks AJ, Cruz-Motta JJ, Booth DJ, Chabanet P, Gough C, Tupper M, Ferse SCA, Sumaila UR, Mouillot D (2016) Bright spots among the world’s coral reefs. Nature 535:416–419

    Article  CAS  PubMed  Google Scholar 

  • Clavier J, Chauvaud L, Cuet P, Esbelin C, Frouin P, Taddei D, Thouzeau G (2008) Diel variation of benthic respiration in a coral reef sediment (Reunion Island, Indian Ocean). Estuar Coast Shelf Sci 76:369–377

    Article  Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127

    Article  Google Scholar 

  • Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907

    Article  Google Scholar 

  • de Beer D, Kühl M, Stambler N, Vaki L (2000) A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Mar Ecol Prog Ser 194:75–85

    Article  Google Scholar 

  • Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Bio Ecol 115:67–77

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  PubMed  Google Scholar 

  • Diehl WJ, McEdward L, Proffitt E, Rosenberg V, Lawrence JM (1979) The response of Luidia clathrata (Echinodermata: Asteroidea) to hypoxia. Comp Biochem Physiol A Physiol 62:669–671

    Article  Google Scholar 

  • Dinsdale EA, Rohwer F (2011) Fish or germs? Microbial dynamics associated with changing trophic structures on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 231–240

    Chapter  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Bio Ecol 349:205–214

    Article  CAS  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  PubMed  Google Scholar 

  • Dupont JM, Hallock-Muller P, Jaap WC (2010) Ecological impacts of the 2005 red tide on artificial reef epibenthic macroinvertebrate and fish communities in the eastern Gulf of Mexico. Mar Ecol Prog Ser 415:189–200

    Article  Google Scholar 

  • Dykens JA, Shick JM (1982) Oxygen production by endosymbiotic algae controls superoxide dismutase activity in their animal host. Nature 297:579–580

    Article  CAS  Google Scholar 

  • Dykens JA, Shick JM, Benoit C, Buettner GR, Winston GW (1992) Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J Exp Biol 168:219–241

    CAS  Google Scholar 

  • Ellington WR (1982) Metabolic responses of the sea anemone Bunodosoma cavernata (Bosc) to declining oxygen tensions and anoxia. Physiol Zool 55:240–249

    Article  CAS  Google Scholar 

  • Finelli CM, Helmuth BS, Pentcheff ND, Wethey DS (2006) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25:47–57

    Article  Google Scholar 

  • Ford AK, Bejarano S, Nugues MM, Visser PM, Albert S, Ferse SC (2018) Reefs under siege—the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front Mar Sci 5:18

    Article  Google Scholar 

  • Fridovich I (1977) Oxygen is toxic! Bioscience 27:462–466

    Article  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Herrera N, Ferse SC, Kunzmann A, Genin A (2017) Mutualistic damselfish induce higher photosynthetic rates in their host coral. J Exp Biol 220:1803–1811

    Article  PubMed  Google Scholar 

  • Gardella DJ, Edmunds PJ (1999) The oxygen microenvironment adjacent to the tissue of the scleractinian Dichocoenia stokesii and its effects on symbiont metabolism. Mar Biol 135:289–295

    Article  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Genin A, Lazar B, Brenner S (1995) Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377:507–510

    Article  CAS  Google Scholar 

  • Glas MS, Sato Y, Ulstrup KE, Bourne DG (2012) Biogeochemical conditions determine virulence of black band disease in corals. ISME J 6:1526–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldshmid R, Holzman R, Weihs D, Genin A (2004) Aeration of corals by sleep-swimming fish. Limnol Oceanogr 49:1832–1839

    Article  Google Scholar 

  • Gordin H (2000) Environmental effects of mariculture in the Gulf of Eilat. Ecology and Environment 6:124–127 [In Hebrew]

    Google Scholar 

  • Green EP, Bruckner AW (2000) The significance of coral disease epizootiology for coral reef conservation. Biol Conserv 96:347–361

    Article  Google Scholar 

  • Gregg AK, Hatay M, Haas AF, Robinett NL, Barott K, Vermeij MJA, Marhaver KL, Meirelles P, Thompson F, Rohwer F (2013) Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates. PeerJ 1:e107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzmán HM, Cortés J, Glynn PW, Richmond RH (1990) Coral mortality associated with dinoflagellate blooms in the eastern Pacific (Costa Rica and Panama). Mar Ecol Prog Ser 60:299–303

    Article  Google Scholar 

  • Haas AF, Naumann MS, Struck U, Mayr C, el-Zibdah M, Wild C (2010a) Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J Exp Mar Bio Ecol 389:53–60

    Article  CAS  Google Scholar 

  • Haas AF, Jantzen C, Naumann MS, Iglesias-Prieto R, Wild C (2010b) Organic matter release by the dominant primary producers in a Caribbean reef lagoon: implication for in situ O2 availability. Mar Ecol Prog Ser 409:27–39

    Article  CAS  Google Scholar 

  • Haas AF, Nelson CE, Kelly LW, Carlson CA, Rohwer F, Leichter JJ, Wyatt A, Smith JE (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PloS One 6:e27973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas AF, Gregg AK, Smith JE, Abieri ML, Hatay M, Rohwer F (2013) Visualization of oxygen distribution patterns caused by coral and algae. PeerJ 1:e106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas AF, Smith JE, Thompson M, Deheyn DD (2014) Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2:e235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas AF, Fairoz MF, Kelly LW, Nelson CE, Dinsdale EA, Edwards RA, Giles S, Hatay M, Hisakawa N, Knowles B, Lim YW (2016) Global microbialization of coral reefs. Nat Microbiol 1:16042

    Article  CAS  PubMed  Google Scholar 

  • Harland AD, Davies PS (1995) Symbiont photosynthesis increases both respiration and photosynthesis in the symbiotic sea anemone Anemonia viridis. Mar Biol 123:715–722

    Article  Google Scholar 

  • Harper SL, Reiber C (1999) Influence of hypoxia on cardiac functions in the grass shrimp (Palaemonetes pugio Holthuis). Comp Biochem Physiol A Comp Physiol 124:569–573

    Article  Google Scholar 

  • Harris P, Fichez R (1995) Observations et mécanismes de la crise dystrophique de 1994 dans le lagon de l’atoll d’Hikueru (Archipel des Tuamotu, Polynésie Française) [Observations and mechanisms of the 1994 dystrophic crisis in the lagoon of the Hikueru atoll (Tuamotu Archipelago, French Polynesia]. Technical Report 45, Centre ORSTOM de Tahiti, Notes & Documents Océanographie, Papeete, Tahiti, French Polynesia [In French]

  • Helmuth B, Sebens K (1993) The influence of colony morphology and orientation to flow on particle capture by the scleractinian coral Agaricia agaricites (Linnaeus). J Exp Mar Bio Ecol 165:251–278

    Article  Google Scholar 

  • Hobbs JPA, Macrae H (2012) Unusual weather and trapped coral spawn lead to fish kill at a remote coral atoll. Coral Reefs 31:961–961

    Article  Google Scholar 

  • Hobbs J, McDonald CA (2010) Increased seawater temperature and decreased dissolved oxygen triggers fish kill at the Cocos (Keeling) Islands, Indian Ocean. J Fish Biol 77:1219–1229

    Article  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

  • Jamieson D, Chance B, Cadenas E, Boveris A (1986) The relation of free radical production to hyperoxia. Annu Rev Physiol 48:703–719

    Article  CAS  PubMed  Google Scholar 

  • Jokiel PL (1978) Effects of water motion on reef corals. J Exp Mar Bio Ecol 35:87–97

    Article  Google Scholar 

  • Jokiel PL, Hunter CL, Taguchi S, Watarai L (1993) Ecological impact of a fresh-water “reef kill” in Kaneohe Bay, Oahu. Hawaii. Coral Reefs 12:177–184

    Article  Google Scholar 

  • Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase. Nature 291:513–515

    Article  CAS  Google Scholar 

  • Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30:111–122

    Article  Google Scholar 

  • Jorissen H, Skinner C, Osinga R, de Beer D, Nugues NM (2016) Evidence for water-mediated mechanisms in coral–algal interactions. Proc R Soc Lond B Biol Sci 283:20161137

    Article  Google Scholar 

  • Kassahn KS, Caley MJ, Ward AC, Connolly AR, Stone G, Crozier RH (2007) Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol 16:1749–1763

    Article  CAS  PubMed  Google Scholar 

  • Kinsey DW, Kinsey E (1967) Diurnal changes in oxygen content of the water over the coral reef platform at Heron I. Mar Freshw Res 18:23–34

    Article  Google Scholar 

  • Kraines S, Suzuki Y, Yamada K, Komiyama H (1996) Separating biological and physical changes in dissolved oxygen concentration in a coral reef. Limnol Oceanogr 41:1790–1799

    Article  Google Scholar 

  • Kuempel CD, Altieri AH (2017) The emergent role of small-bodied herbivores in pre-empting phase shifts on degraded coral reefs. Sci Rep 7:39670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for 02, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Laboy-Nieves EN, Klein E, Conde JE, Losada F, Cruz JJ, Bone D (2001) Mass mortality of tropical marine communities in Morrocoy, Venezuela. Bull Mar Sci 68:163–179

    Google Scholar 

  • Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131

    Article  CAS  Google Scholar 

  • Lapointe BE, Matzie WR (1996) Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries Coast 19:422–435

    Article  CAS  Google Scholar 

  • Lapointe BE, Barile PJ, Littler MM, Littler DS, Bedford BJ, Gasque C (2005) Macroalgal blooms on southeast Florida coral reefs: I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment. Harmful Algae 4:1092–1105

    Article  CAS  Google Scholar 

  • Lefevre S, Watson SA, Munday PL, Nilsson GE (2015) Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus. J Exp Biol 218:2991–3001

    Article  PubMed  Google Scholar 

  • Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377

    Article  Google Scholar 

  • Lesser MP, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol 102:243–255

    Article  Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192

    Article  Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Bio Ecol 300:217–252

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  • Lesser MP, Stochaj WR, Tapley DW, Schick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232

    Article  Google Scholar 

  • Liberman T, Genin A, Loya Y (1995) Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Marine Biology 121:741–746

    Article  Google Scholar 

  • Llanso RJ, Diaz RJ (1994) Tolerance to low dissolved oxygen by the tubicolous polychaete Loimia medusa. J Mar Biol Assoc U.K. 74:143–148

    Article  Google Scholar 

  • Loya Y (2004) The coral reefs of Eilat—past, present and future: three decades of coral community structure studies. In: Rosenberg E, Loya Y (eds) Coral Health and Disease. Springer, Berlin/Heidelberg, Germany, pp 1–34

    Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol B 144:283–289

    Article  CAS  PubMed  Google Scholar 

  • Mangum C, Van Winkle W (1973) Responses of aquatic invertebrates to declining oxygen conditions. Am Zool 13:529–541

    Article  Google Scholar 

  • Marshall AT, Clode PL (2003) Light-regulated Ca2+ uptake and O2 secretion at the surface of a scleractinian coral Galaxea fascicularis. Comp Biochem Physiol A Comp Physiol 136:417–426

    Article  CAS  Google Scholar 

  • Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc Natl Acad Sci U S A 107:2527–2531

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer AG (1917) Is Death from High Temperature Due to the Accumulation of Acid in the Tissues? Proc Natl Acad Sci U S A 3:626–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McManus JW (1997) Tropical marine fisheries and the future of coral reefs: a brief review with emphasis on Southeast Asia. Coral Reefs 16:S121–S127

    Article  Google Scholar 

  • Mehler AH (1951) Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents. Arch Biochem Biophys 33:65–77

    Article  CAS  PubMed  Google Scholar 

  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Seymour RS (2011) The regulation index: a new method for assessing the relationship between oxygen consumption and environmental oxygen. Physiol Biochem Zool 84:522–532

    Article  PubMed  Google Scholar 

  • Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish (Oxf) 9:261–285

    Article  Google Scholar 

  • Murphy JW, Richmond RH (2016) Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 4:e1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol 100:185–193

    Article  Google Scholar 

  • Nakamura T, Van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304

    Article  Google Scholar 

  • Naumann MS, Haas A, Struck U, Mayr C, el-Zibdah M, Wild C (2010) Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659

    Article  Google Scholar 

  • Nelson HR, Kuempel CD, Altieri AH (2016) The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 7:e1399

    Google Scholar 

  • Niggl W, Haas AF, Wild C (2010) Benthic community composition affects O2 availability and variability in a Northern Red Sea fringing reef. Hydrobiologia 644:401–405

    Article  CAS  Google Scholar 

  • Nilsson GE, Östlund-Nilsson S (2004) Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes. Proc R Soc Lond B Biol Sci 271:S30–S33

    Google Scholar 

  • Nilsson GE, Östlund-Nilsson S (2008) Does size matter for hypoxia tolerance in fish? Biol Rev Camb Philos Soc 83:173–189

    Article  PubMed  Google Scholar 

  • Nilsson GE, Renshaw GM (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207:3131–3139

    Article  CAS  PubMed  Google Scholar 

  • Nilsson GE, Hobbs JP, Munday PL, Östlund-Nilsson S (2004) Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby. J Exp Biol 207:33–39

    Article  PubMed  Google Scholar 

  • Nilsson GE, Hobbs JA, Östlund-Nilsson S, Munday PL (2007a) Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes. Coral Reefs 26:241–248

    Article  Google Scholar 

  • Nilsson GE, Hobbs JPA, Östlund-Nilsson S (2007b) Tribute to PL Lutz: respiratory ecophysiology of coral-reef teleosts. J Exp Biol 210:1673–1686

    Article  PubMed  Google Scholar 

  • Nilsson GE, Östlund-Nilsson S, Penfold R, Grutter AS (2007c) From record performance to hypoxia tolerance: respiratory transition in damselfish larvae settling on a coral reef. Proc R Soc Lond B Biol Sci 274:79–85

    Article  CAS  Google Scholar 

  • Nilsson GE, Östlund-Nilsson S, Munday PL (2010) Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comp Biochem Physiol A Comp Physiol 156:389–393

    Article  CAS  Google Scholar 

  • Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576

    Google Scholar 

  • Oliver JK (1984) Intra-colony variation in the growth of Acropora formosa: extension rates and skeletal structure of white (zooxanthellae-free) and brown-tipped branches. Coral Reefs 3:139–147

    Article  Google Scholar 

  • Onton K, Page CA, Wilson SK, Neale S, Armstrong S (2011) Distribution and drivers of coral disease at Ningaloo reef, Indian Ocean. Mar Ecol Prog Ser 433:75–84

    Article  Google Scholar 

  • Ostlund-Nilsson S, Nilsson GE (2004) Breathing with a mouth full of eggs: respiratory consequences of mouthbrooding in cardinalfish. Proc R Soc Lond B Biol Sci 271:1015–1022

    Article  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  PubMed  Google Scholar 

  • Pastorok RA, Bilyard GR (1985) Effects of sewage pollution on coral-reef communities. Mar Ecol Prog Ser 21:175–189

    Article  Google Scholar 

  • Patterson MR (1992a) A mass transfer explanation of metabolic scaling relations in some aquatic invertebrates and algae. Science 255:1421–1423

    Article  CAS  PubMed  Google Scholar 

  • Patterson MR (1992b) A chemical engineering view of cnidarian symbioses. Am Zool 32:566–582

    Article  Google Scholar 

  • Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnol Oceanogr 36:936–948

    Article  CAS  Google Scholar 

  • Pauly D, Cheung WW (2018) Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob Chang Biol 24:e15–e26

    Article  PubMed  Google Scholar 

  • Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar Ecol Prog Ser 470:273–290

    Article  CAS  Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Rex A, Montebon F, Yap HT (1995) Metabolic responses of the scleractinian coral Porites cylindrica Dana to water motion. I. Oxygen flux studies. J Exp Mar Bio Ecol 186:33–52

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1984) Does light enhance calcification in hermatypic corals? Mar Biol 80:1–6

    Article  CAS  Google Scholar 

  • Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91

    Article  CAS  PubMed  Google Scholar 

  • Roffman B (1968) Patterns of oxygen exchange in some Pacific corals. Comp Biochem Physiol 27:405–418

    Article  Google Scholar 

  • Routley MH, Nilsson GE, Renshaw GM (2002) Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp Biochem Physiol A Comp Physiol 131:313–321

    Article  Google Scholar 

  • Rutherford LD Jr, Thuesen EV (2005) Metabolic performance and survival of medusae in estuarine hypoxia. Mar Ecol Prog Ser 294:189–200

    Article  Google Scholar 

  • Sassaman C, Mangum CP (1972) Adaptations to environmental oxygen levels in infaunal and epifaunal sea anemones. Biol Bull 143:657–678

    Article  PubMed  Google Scholar 

  • Sassaman C, Mangum CP (1973) Relationship between aerobic and anaerobic metabolism in estuarine anemones. Comp Biochem Physiol A Comp Physiol 44:1313–1319

    Article  CAS  Google Scholar 

  • Sassaman C, Mangum CP (1974) Gas exchange in a cerianthid. J Exp Zool 188:297–306

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Civiello M, Bell SC, Willis BL, Bourne DG (2016) Integrated approach to understanding the onset and pathogenesis of black band disease in corals. Environ Microbiol 18:752–765

    Article  CAS  PubMed  Google Scholar 

  • Shashar N, Cohen Y, Loya Y (1993) Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol Bull 185:455–461

    Article  CAS  PubMed  Google Scholar 

  • Shashar N, Kinane S, Jokiel PL, Patterson MR (1996) Hydromechanical boundary layers over a coral reef. J Exp Mar Bio Ecol 199:17–28

    Article  Google Scholar 

  • Shick JM (1990) Diffusion limitation and hyperoxic enhancement of oxygen consumption in zooxanthellate sea anemones, zoanthids, and corals. Biol Bull 179:148–158

    Article  CAS  PubMed  Google Scholar 

  • Shumway SE (1978) Activity and respiration in the anemone, Metridium senile (L.) exposed to salinity fluctuations. J Exp Mar Bio Ecol 33:85–92

    Article  Google Scholar 

  • Simpson CJ, Cary JL, Masini RJ (1993) Destruction of corals and other reef animals by coral spawn slicks on Ningaloo Reef, Western Australia. Coral Reefs 12:185–191

    Article  Google Scholar 

  • Smith GB (1975) The 1971 red tide and its impact on certain reef communities in the mid-eastern Gulf of Mexico. Environ Lett 9:141–152

    Article  CAS  PubMed  Google Scholar 

  • Smith SV, Kimmerer WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pac Sci 35:279–395

    CAS  Google Scholar 

  • Smith JE, Runcie JW, Smith CM (2005) Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawai’i. Mar Ecol Prog Ser 302:77–91

    Article  CAS  Google Scholar 

  • Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, Sandin SA, Smriga S, Hatay M, Rohwer FL (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835–845

    Article  PubMed  Google Scholar 

  • Sørensen C, Munday PL, Nilsson GE (2014) Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival. Glob Chang Biol 20:724–729

    Article  PubMed  Google Scholar 

  • Szczebak JT, Henry RP, Al-Horani FA, Chadwick NE (2013) Anemonefish oxygenate their anemone hosts at night. J Exp Biol 216:970–976

    Article  PubMed  Google Scholar 

  • Tamai K (1993) Tolerance of Theora fragilis (Bivalvia: Semelidae) to low concentrations of dissolved oxygen. Nippon Suisan Gakkaishi 59:615–620 [In Japanese]

    Article  Google Scholar 

  • Thacker RW, Paul VJ (2001) Are benthic cyanobacteria indicators of nutrient enrichment? Relationships between cyanobacterial abundance and environmental factors on the reef flats of Guam. Bull Mar Sci 69:497–508

    Google Scholar 

  • Tytler EM, Davies PS (1984) Photosynthetic production and respiratory energy expenditure in the anemone Anemonia sulcata (Pennant). J Exp Mar Bio Ecol 81:73–86

    Article  Google Scholar 

  • Ulstrup KE, Hill R, Ralph PJ (2005) Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 286:125–132

    Article  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci U S A 105:15452–15457

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaquer-Sunyer R, Duarte CM (2011) Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob Chang Biol 17:1788–1797

    Article  Google Scholar 

  • Villanueva RD, Yap HT, Montaño MNE (2005) Survivorship of coral juveniles in a fish farm environment. Mar Pollut Bull 51:580–589

    Article  CAS  PubMed  Google Scholar 

  • Wabnitz C, Taylor M, Green E, Razak T (2003) From Ocean to Aquarium. UNEP-WCMC, Cambridge, UK

    Google Scholar 

  • Wangpraseurt D, Weber M, Røy H, Polerecky L, de Beer D, Nugues MM (2012) In situ oxygen dynamics in coral–algal interactions. PloS One 7:e31192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RM, Ferdelman TG, Fabricius KE (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci U S A 109:E1558–E1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res 17:721–735

    CAS  Google Scholar 

  • Whitney SM, Shaw DC, Yellowlees D (1995) Evidence that some dinoflagellates contain a ribulose-1, 5-bisphosphate carboxylase/oxygenase related to that of the α-proteobacteria. Proc R Soc Lond B Biol Sci 259:271–275

    Article  CAS  Google Scholar 

  • Wijgerde T, Jurriaans S, Hoofd M, Verreth JA, Osinga R (2012) Oxygen and heterotrophy affect calcification of the scleractinian coral Galaxea fascicularis. PLoS One 7:e52702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijgerde T, Silva CI, Scherders V, van Bleijswijk J, Osinga R (2014) Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biol Open 3:489–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wild C, Niggl W, Naumann MS, Haas AF (2010) Organic matter release by Red Sea coral reef organisms—potential effects on microbial activity and in situ O2 availability. Mar Ecol Prog Ser 411:61–71

    Article  CAS  Google Scholar 

  • Yonge SCM, Nicholls AG, Yonge MJ (1932) The relationship between respiration in corals and the production of oxygen by their zooxanthellae. Scientific Reports, Great Barrier Reef Expedition 1928–29(1):213–251

    Google Scholar 

  • Zhu B, Wang G, Huang B, Tseng CK (2004) Effects of temperature, hypoxia, ammonia and nitrate on the bleaching among three coral species. Chin Sci Bull 49:1923–1928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for comments on earlier versions of this paper. This research was supported by the Smithsonian Tropical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah R. Nelson.

Additional information

Topic Editor Morgan S. Pratchett

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, H.R., Altieri, A.H. Oxygen: the universal currency on coral reefs. Coral Reefs 38, 177–198 (2019). https://doi.org/10.1007/s00338-019-01765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01765-0

Keywords

Navigation