Skip to main content

Advertisement

Log in

Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

With more than 450 studied species, coral reproduction is a well-known research field. However, the vast majority of coral reproduction research has focused exclusively on shallow reefs. The incentive for the present study was: (1) the recent accelerated global degradation of coral reefs; (2) the growing interest in mesophotic coral ecosystems (MCEs; 30–120 m depth) and their potential to serve as a larval source for shallow reefs; and (3) the lack of information on MCE coral reproduction. Here, we compare the reproduction and ecology of the depth-generalist coral Paramontastraea peresi between shallow (5–10 m) and mesophotic (40–45 m) habitats in the Gulf of Eilat/Aqaba, Red Sea. Field surveys were conducted to assess the living cover, abundance, and size frequency distribution of P. peresi. Four to six colonies from each habitat were sampled monthly between April 2015 and January 2017, and the gametogenesis cycles, fecundity, and oocyte sizes were measured. The reproductive cycle in the MCEs was shorter than in the shallow reef. Despite having larger polyps, the mesophotic colonies contained significantly smaller and fewer oocytes per polyp. In spite of the relatively stable environmental conditions of the MCEs, which may contribute to coral survival, scarcity of sunlight is probably a major energetic impediment to investment in reproduction by P. peresi at mesophotic depths. Further intensive reproductive studies in mesophotic reefs are thus required to assess the ability of corals in this environment to reproduce and constitute a larval source for depleted shallow-water reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akkaynak D, Treibitz T, Shlesinger T, Tamir R, Loya Y, Iluz D (2017) What is the space of attenuation coefficients in underwater computer vision? Proceedings of the IEEE Computer Vision and Pattern Recognition conference (CVPR), 21–26 July 2017, Honolulu, Hawaii, pp 4931–4940

  • Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys. Funct Ecol 17:246–259

    Article  Google Scholar 

  • Babcock RC, Bull G, Harrison PL, Heyward A, Oliver J, Wallace C, Willis B (1986) Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar Biol 90:379–394

    Article  Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  • Bak RP, Nieuwland G, Meesters EH (2005) Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs 24:475–479

    Article  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo E, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’ hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Bongaerts P, Riginos C, Brunner R, Englebert N, Smith SR, Hoegh-Guldberg O (2017) Deep reefs are not universal refuges: reseeding potential varies among coral species. Sci Adv 3:e1602373

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox EF, Ward S (2002) Impact of elevated ammonium on reproduction in two Hawaiian scleractinian corals with different life history patterns. Mar Pollut Bull 44:1230–1235

    Article  CAS  PubMed  Google Scholar 

  • Eyal G, Eyal-Shaham L, Cohen I, Tamir R, Ben-Zvi O, Sinniger F, Loya Y (2016) Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35:91–102

    Article  Google Scholar 

  • Eyal-Shaham L, Eyal G, Tamir R, Loya Y (2016) Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Sci Rep 6:20964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure G, Pichon M (1978) Description de Favites peresi, nouvelle espèce de Scleractiniaire hermatypique de l’océan Indien (Cnidaria, Anthozoa, Scleractinia). Bulletin du Muséum National d’Histoire Naturelle, Paris, 3e série 513:107–127

  • Fricke HW, Schuhmacher H (1983) The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol 4:163–194

    Article  Google Scholar 

  • Fryxell PA (1957) Mode of reproduction of higher plants. Bot Rev 23:135–233

    Article  Google Scholar 

  • Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509

    Article  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 59–85

    Chapter  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs, ecosystems of the world 25. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Holstein DM, Smith TB, Gyory J, Paris CB (2015) Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci Rep 5:12407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holstein DM, Smith TB, Paris CB (2016) Depth-independent reproduction in the reef coral Porites astreoides from shallow to mesophotic zones. PLoS One 11:e0146068

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 171:277–355

    Article  Google Scholar 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44:932–940

    Article  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TCL, Butler I, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin M, Figueira W, Gilmour J, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C-Y, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm H, McWilliam M, Pandolfi JM, Pears R, Pratchett MS, Schoepf V, Simpson T, Skirving W, Sommer B, Torda G, Wachenfeld D, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Huston M (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4:19–25

    Article  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, Amsterdam, p 231

    Google Scholar 

  • Jokiel PL, Ito RY, Liu PM (1985) Night irradiance and synchronization of lunar release of planula larvae in the reef coral Pocillopora damicornis. Mar Biol 88:167–174

    Article  Google Scholar 

  • Kahng S, Copus J, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Curr Opin Environ Sustain 7:72–81

    Article  Google Scholar 

  • Kojis BL, Quinn NJ (1981) Aspects of sexual reproduction and larval development in the shallow water hermatypic coral Goniastrea australensis (Edwards and Haime, 1857). Bull Mar Sci 31:558–573

    Google Scholar 

  • Kojis BL, Quinn NJ (1984) Seasonal and depth variation in fecundity of Acropora palifera at two reefs in Papua New Guinea. Coral Reefs 3:165–172

    Article  Google Scholar 

  • Kramarsky-Winter E, Loya Y (1998) Reproductive strategies of two fungiid corals from the northern Red Sea: environmental constraints? Mar Ecol Prog Ser 174:175–182

    Article  Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Bio Ecol 375:1–8

    Article  Google Scholar 

  • Loya Y (1975) Possible effects of water pollution on the community structure of Red Sea corals. Mar Biol 29:177–185

    Article  Google Scholar 

  • Loya Y, Rinkevich B (1979) Abortion effect in corals induced by oil pollution. Mar Ecol Prog Ser 1:77–80

    Article  Google Scholar 

  • Loya Y, Rinkevich B (1980) Effects of oil pollution on coral reef communities. Mar Ecol Prog Ser 3:167–180

    Article  Google Scholar 

  • Loya Y, Sakai K (2008) Bidirectional sex change in mushroom stony corals. Proc R Soc Lond B Biol Sci 275:2335–2343

    Article  Google Scholar 

  • Loya Y, Lubinevsky H, Rosenfeld M, Kramarsky-Winter E (2004) Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Mar Pollut Bull 49:344–353

    Article  CAS  PubMed  Google Scholar 

  • Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: advances in knowledge and future perspectives. Coral Reefs 35:1–9

    Article  Google Scholar 

  • Madin JS, Anderson KD, Andreasen MH, Bridge TC, Cairns SD, Connolly SR, Darling ES, Diaz M, Falster DS, Franklin EC, Gates RD, Hoogenboom MO, Huang D, Keith SA, Kosnik MA, Kuo CY, Lough JM, Lovelock CE, Luiz O, Martinelli J, Mizerek T, Pandolfi JM, Pochon X, Pratchett MS, Putnam HM, Roberts TE, Stat M, Wallace CC, Widman E, Baird AH (2016) The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci Data 3:160017

    Article  PubMed  PubMed Central  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shashar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    Article  CAS  Google Scholar 

  • Nir O, Gruber D, Einbinder S, Kark S, Tchernov D (2011) Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30:1089

    Article  Google Scholar 

  • Nozawa Y (2012) Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol Bull 222:192–202

    Article  PubMed  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  PubMed  Google Scholar 

  • Pennisi E (2007) Spawning for a better life. Science 318:1712–1717

    Article  CAS  PubMed  Google Scholar 

  • Prasetia R, Sinniger F, Harii S (2016) Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35:53–62

    Article  Google Scholar 

  • Prasetia R, Sinniger F, Hashizume K, Harii S (2017) Reproductive biology of the deep brooding coral Seriatopora hystrix: implications for shallow reef recovery. PLoS One 12:e0177034

    Article  PubMed  PubMed Central  Google Scholar 

  • Rapuano H, Brickner I, Shlesinger T, Meroz-Fine E, Tamir R, Loya Y (2017) Reproductive strategies of the coral Turbinaria reniformis in the northern Gulf of Aqaba (Red Sea). Sci Rep 7:42670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser 60:185–203

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1979a) Reproduction of the Red Sea coral Stylophora pistillata. 1. Gonads and planulae. Mar Ecol Prog Ser 1:133–144

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1979b) The reproduction of the Red Sea coral Stylophora pistillata. II. Synchronization in breeding and seasonality of planulae shedding. Mar Ecol Prog Ser 1:145–152

    Article  Google Scholar 

  • Rinkevich B, Loya Y (1987) Variability in the pattern of sexual reproduction of the coral Stylophora pistillata at Eilat, Red Sea: a long-term study. Biol Bull 173:335–344

    Article  Google Scholar 

  • Sakai K (1998) Effect of colony size, polyp size, and budding mode on egg production in a colonial coral. Biol Bull 195:319–325

    Article  CAS  PubMed  Google Scholar 

  • Shlesinger Y, Loya Y (1985) Coral community reproductive patterns: Red Sea versus the Great Barrier Reef. Science 228:1333–1335

    Article  CAS  PubMed  Google Scholar 

  • Shlesinger T, Loya Y (2016) Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs 35:1357–1368

    Article  Google Scholar 

  • Shlesinger Y, Goulet T, Loya Y (1998) Reproductive patterns of scleractinian corals in the northern Red Sea. Mar Biol 132:691–701

    Article  Google Scholar 

  • Slattery M, Lesser MP, Brazeau D, Stokes MD, Leichter JJ (2011) Connectivity and stability of mesophotic coral reefs. J Exp Mar Bio Ecol 408:32–41

    Article  Google Scholar 

  • Smith TB, Gyory J, Brandt ME, Miller WJ, Jossart J, Nemeth RS (2016) Caribbean mesophotic coral ecosystems are unlikely climate change refugia. Glob Chang Biol 22:2756–2765

    Article  PubMed  Google Scholar 

  • Spirlet C, Grosjean P, Jangoux M (2000) Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture 185:85–99

    Article  Google Scholar 

  • Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43–53

    Article  Google Scholar 

  • Szmant-Froelich AM (1985) The effect of colony size on the reproductive ability of the Carribean coral Montastrea annularis (Ellis and Solander). Proc 5th Int Coral Reef Symp 4:295–300

    Google Scholar 

  • Veron JEN (2000) The corals of the world, vol 3. Townsville, Australian Institute of Marine Science, p 166

    Google Scholar 

  • Vize PD (2006) Deepwater broadcast spawning by Montastraea cavernosaMontastraea franksi, and Diploria strigosa at the Flower Garden Banks, Gulf of Mexico. Coral Reefs 25:169–171

    Article  Google Scholar 

  • Wilkinson C, Souter D (2008) The status of Caribbean coral reefs after bleaching and hurricanes in 2005. Coral Reef Monitoring Network and Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Willis BL, Babcock RC, Harrison PL, Oliver JK, Wallace CC (1985) Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. Proc 5th Int Coral Reef Symp 4:343–348

    Google Scholar 

  • Wolgast LJ, Zeide B (1983) Reproduction of trees in a variable environment. Bot Gaz 144:260–262

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Interuniversity Institute for Marine Sciences at Eilat (IUI) for the logistical support. We are indebted to R. Tamir, O. Ben-Zvi, H. Rapuano, M. Grinblat, L. Eyal-Shaham, G. Eyal, and I. Brickner for their help with the field and laboratory work. This study was partially supported by the Israel Science Foundation (ISF) No. 341/12 and the US Middle East Regional Cooperation (MERC) Program Agency for International Development (MERC/USAID) No. M32-037 to Y.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bar Feldman.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Photomicrograph of oogenesis stages II–V and spermary stages II and III in Paramontastraea peresi (stages defined in ESM Table S1). (a) Stage II oocytes (b) Stage III oocytes (c) Stage III and IV oocytes (d) Stage IV and V oocytes (e) Stage II spermaries (f) Stage III spermaries. NUC: nucleus; NUL: nucleolus; RM: reservoir materials FLG: flagella (TIFF 6818 kb)

Supplementary material 2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018). https://doi.org/10.1007/s00338-017-1648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1648-8

Keywords

Navigation