Skip to main content
Log in

Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The algae living endosymbiotically within coral are thought to increase algal pigmentation with increasing depth to capture the diminishing light. Here, we follow distribution of the hermatypic coral Seriatopora hystrix along a 60-m bathymetric gradient in the Gulf of Eilat, Red Sea, to study coral ecophysiology and response to light regimes. Combining work on coral morphology, pigment content and genotyping of the photosymbiont, we found that total chlorophyll concentration per zooxanthellae cell and the dark- and light-acclimated quantum yield of photosystem II did not vary significantly along the 60-m gradient. However, the chlorophyll a/c ratio increased with depth. This suggests that the symbiotic algae in S. hystrix possess a mechanism for acclimatization or adaptation that differs from previously described pathways. The accepted photoacclimatory process involves an increase in chlorophyll content per alga as light intensity decreases. Based on corallite and branch morphology, this research suggests that S. hystrix has two depth-dependent ecophenotypes. Above 10 m depth, S. hystrix exhibits sturdier colony configurations with thick branches, while below 30 m depth, colonies are characterized by thin branches and the presence of a larger polyp area. Between 10 and 30 m depth, both ecophenotypes are present, suggesting that corallite morphology may act as another axis of photoacclimation with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Al-Moghrabi S, Allemand D, Jaubert J (1993) Valine uptake by the scleractinian coral Galaxea fascicularis: characterisation and effect of light and nutritional status. J Comp Physiol B 163:355–362

    Article  CAS  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  PubMed  Google Scholar 

  • Anthony KRN, Hoegh-Guldberg O (2003) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259

    Article  Google Scholar 

  • Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306

    Article  Google Scholar 

  • Bongarets P, Riginos C, Ridgway T, Sampayo EM, Van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PloS ONE 5:e10871

    Article  Google Scholar 

  • Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochem Biophys Acta 1760:1690–1695

    PubMed  CAS  Google Scholar 

  • Brown BE, Dunne RP, Goodson MS, Douglas AE (2000) Marine ecology—bleaching patterns in reef corals. Nature 404:142–143

    Article  PubMed  CAS  Google Scholar 

  • Bruno JF, Edmunds PJ (1997) Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78:2177–2190

    Google Scholar 

  • Coleman AW, Suarez A, Goff LJ (1994) Molecular delineation of species and syngens in Volvocacean Green-Algae (Chlorophyta). J Phycol 30:80–90

    Article  CAS  Google Scholar 

  • Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prasil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: Methods and applications. Springer, London, pp 1–18

    Google Scholar 

  • Dai CF (1989) Scleractinia of Taiwan 1. Families astroceniidae and pocilloporidae. Acta Oceanogr Taiwanica 22:83–101

    Google Scholar 

  • Dana JD (1846) Zoophytes. US Exploratory Expeditions 1836–1842. 7:1–740

  • Darwin C (1842) The structure and distribution of coral reefs. Stewart and Murray, London

    Google Scholar 

  • Dodge RE, Aller RC, Thomson J (1974) Coral growth related to resuspension of bottom sediments. Nature 247:574–576

    Article  CAS  Google Scholar 

  • Dojiri M (1988) Isomolgus-desmotes, new genus, new species (Lichomolgidae), A Gallicolous Poecilostome copepod from the scleractinian coral Seriatopora-Hystrix Dana in Indonesia, with a review of gall-inhabiting Crustaceans of Anthozoans. Journal of Crustacean Biology 8:99–109

    Article  Google Scholar 

  • Dove SG, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204

    Article  Google Scholar 

  • Dove SG, Lovell C, Fine M, Deckenback J, Hoegh-Guldberg O, Iglesias-Prieto R, Anthony KRN (2008) Host pigments: potential facilitators of photosynthesis in coral symbioses. Plant Cell Environ 31:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Dubinsky Z, Falkowski PG, Porter JW, Muscatine L (1984) Absorption and utilization of radiant energy by light-adapted and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc R Soc Lond B Bio 222:203–214

    Article  CAS  Google Scholar 

  • Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol 33:101–107

    Article  Google Scholar 

  • Dustan P (1982) Depth- dependent photoadaptation by zooxanthellae of the reef coral Montastrea annularis. Mar Biol 68:253–264

    Article  CAS  Google Scholar 

  • Edmunds JP (2005) The effect of sub-lethal increases in temperature on the growth and population trajectories of three scleractinian corals on the southern Great Barrier Reef. Oecologia 146:350–364

    Article  PubMed  Google Scholar 

  • Einbinder S, Mass T, Brokovich E, Dubinsky Z, Erez J, Tchernov D (2009) Changes in morphology and diet of the coral Stylophora pistillata along a depth gradient. Mar Ecol Prog Ser 381:167–174

    Article  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  • Fabricius K, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr 40:1290–1301

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Falkowski PG, Laroche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14

    Article  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  • Falkowski PG, Jokiel PL, Kinzie RA III (1990) Irradiance and corals. Elsevier, Amsterdam

    Google Scholar 

  • Frade PR, Jongh FDA, Vermeulen F, Van Bleikswijk J, Bak RPM (2008) Variation in symbiont distribution between closely related coral species over large depth range. Mol Ecol 17:691–703

    Article  PubMed  CAS  Google Scholar 

  • Franzisket L (1970) The atrophy of hermatipic reef corals maintained in darkness and their subsequent regeneration in light. Int Rev Gesamten Hydrobiol 55:1–12

    Article  Google Scholar 

  • Fricke HW (1996) Deep-water exploration of the Red Sea by submersible. Biosyst Ecol Ser 11:67–89

    Google Scholar 

  • Fricke HW, Schuhmacher H (1983) The depth limit of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible). Mar Ecol 4:163–194

    Article  Google Scholar 

  • Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D (2006) Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences 3:489–513

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Gleason DF, Wellington GM (1995) Variation in UVb sensitivity of planula larvae of the coral Agaricia agaricites along a depth gradient. Mar Biol 123:693–703

    Article  Google Scholar 

  • Gleason DF, Edmunds PJ, Gates RD (2006) Ultraviolet radiation effects on the behavior and recruitment of larvae from the reef coral Porites astreoides. Mar Biol 148:503–512

    Article  Google Scholar 

  • Graus RR, Macintyre IG (1976) Light control of growth form in colonial reef corals - computer-simulation. Science 193:895–897

    Article  PubMed  CAS  Google Scholar 

  • Gruber DF, Kao H-T, Tsai J, Pieribone VA (2008) Patterns of fluorescent protein expression in scleractinian corals. Biol Bull 215:143–154

    Article  PubMed  Google Scholar 

  • Helmuth BST, Sebens KP, Daniel TL (1997) Morphological variation in coral aggregations: Branch spacing and mass flux to coral tissues. J Exp Mar Biol Ecol 209:233–259

    Article  Google Scholar 

  • Hennige SJ, Suggett DJ, Warner ME, McDougall KE, Smith DJ (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195

    Article  Google Scholar 

  • Houlbreque F, Ferrier-Pages C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17

    Article  PubMed  Google Scholar 

  • Huston MA (1985) Patterns of species diversity on coral reefs. Annu Rev Ecol Syst 16:149–177

    Article  Google Scholar 

  • Iglesias-Prieto R, Trench RK (1997) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll-protein complexes to different photon-flux densities. Mar Biol 130:23–33

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Govind NS, Trench RK (1993) Isolation and characterization of 3 membrane-bound chlorophyll-protein complexes from 4 dinoflagellate species. Philos Trans R Soc Lond B Biol Sci 340:381–392

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond, B 271:1757–1763

    Article  CAS  Google Scholar 

  • Janssen J, Rhiel E (2008) Evidence of monomeric photosystem I complexes and phosphorylation of chlorophyll a/c-binding polypeptides in “Chroomonas” sp. strain LT (Cryptophyceae). Int Microbiol 11:171–178

    PubMed  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrometric equation for determining chlorophyll a, b and c2 on higher plants, algae, and natural phytoplankton. Biochem Physiol Aflanz 167:191–194

    CAS  Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Jones JR, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99

    Article  CAS  Google Scholar 

  • Kinzie RA, Jokiel PL, York R (1984) Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Mar Biol 78:239–248

    Article  Google Scholar 

  • Klaus JS, Budd AF, Heikoop JM, Fouke BW (2007) Environmental controls on corallite morphology in the reef coral Montastrea annularis. Bull Mar Sci 80:233–260

    Google Scholar 

  • Koehl MAR, Hadfield MG (2004) Soluble settlement cue in slowly moving water within coral reeds induces adhesion to surfaces. J Mar Syst 49:75–88

    Article  Google Scholar 

  • Kraus GH, Weis H (1991) Chlorophyll fluorescence: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  Google Scholar 

  • Kuguru B, Chadwick NE, Santos SR, Beer S, Winters G (2007) Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Mar Biol 151:1287–1298

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • Leong TY, Anderson JM (1984) Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis. Photosynth Res 5:117–128

    Article  CAS  Google Scholar 

  • Lesser MP (1996) Acclimation of phytoplankton to UV-B radiation: Oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar Ecol Prog Ser 132:287–297

    Article  CAS  Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252

    Article  Google Scholar 

  • Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003

    Article  PubMed  Google Scholar 

  • Lewis JB (1974) Settlement behavior of planulae larvae of hermatypic coral Favia-fragum (Esper). J Exp Mar Biol Ecol 15:165–172

    Article  Google Scholar 

  • Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo- West Pacific. Mar Ecol Prog Ser 222:97–107

    Article  Google Scholar 

  • Loya Y (1972) Community structure and species diversity of hermatypic corals at Eilat, Red Sea. Mar Biol 13:100–123

    Article  Google Scholar 

  • Maier E, Tollrian R, Rinkevich B, Nurnberger B (2005) Isolation by distance in the scleractinian coral Seriatopora hystrix from the Red Sea. Mar Biol 147:1109–1120

    Article  Google Scholar 

  • Maragos JE, Jokiel PL (1986) Reef corals of Johnston Atoll - One of the worlds most isolated reefs. Coral Reefs 4:141–150

    Article  Google Scholar 

  • Marshall PA (2000) Skeletal damage in reef corals: relating resistance to colony morphology. Mar Ecol Prog Ser 200:177–189

    Article  Google Scholar 

  • Mass T, Genin A (2008) Environmental versus intrinsic determination of colony symmetry in the coral Pocillopora verrucosa. Mar Ecol Prog Ser 369:131–137

    Article  Google Scholar 

  • Mass T, Einbinder S, Brokovich E, Shahar N, Vago R, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102

    Article  CAS  Google Scholar 

  • Masuda K, Goto M, Maruyama T, Miyachi S (1993) Adaptation of solitary corals and their zooxanthellae to low-light and Uv-radiation. Mar Biol 117:685–691

    Article  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Melis A, Harvey GW (1981) Regulation of photosystem stoichiometry, chlorophyll a and chlorophyll b content and relation to chloroplast ultrastructure. Bioenergetics 637(1):138–145

    Article  CAS  Google Scholar 

  • Muko S, Kawasaki K, Sakai K, Takasu F, Shigesada N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239

    Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. 1. Delta-C-13 of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107

    Article  Google Scholar 

  • Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS One 4:e7298

    Article  PubMed  Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am Nat 110:731–742

    Article  Google Scholar 

  • Porter JW, Muscatine L, Dubinsky Z, Falkowski PG (1984) Primary production and photoadaptation in light-adapted and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. P Roy Soc Lond B Bio 222:161–180

    Article  Google Scholar 

  • Prezelin BB (1987) Photosynthetic physiology of dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific, Oxford, pp 174–223

    Google Scholar 

  • Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417

    Article  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  PubMed  CAS  Google Scholar 

  • Sampayo ME, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mar Ecol 16:3721–3733

    CAS  Google Scholar 

  • Sampayo EM, Dove S, Lajeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519

    Article  PubMed  CAS  Google Scholar 

  • Sebens PK, Witting J, Helmuth B (1997) Effect of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelloti). J Exp Mar Biol Ecol 211:1–28

    Article  Google Scholar 

  • Shlesinger Y (1985) Reproduction and juvenile growth in stony corals. Ph.D. thesis, Department of Zoology, Tel-Aviv University

  • Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11

    Article  Google Scholar 

  • Steen RG (1986) Evidence for heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella. Biol Bull 170:267–278

    Article  Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Storlazzi CD, Brown EK, Field ME, Rodgers K, Jokiel PL (2005) A model for wave control on coral breakage and species distribution in the Hawaiian Islands. Coral Reefs 24:43–55

    Article  Google Scholar 

  • Takahashi S, Milward SE, Yamori W, Evans JR, Hillier W, Badger MR (2010) The solar action spectrum of photosystem II damage. Plant Physiol 153:988–993

    Article  PubMed  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: Patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  PubMed  CAS  Google Scholar 

  • Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals.1. growth-rate of the reef-building coral Montastrea annularis. Mar Biol 87:143–155

    Article  Google Scholar 

  • Torre WR, Burkey KO (1990) Acclimation of barley to changes in light intensity: photosynthetic electron transport activity and components. Photosynth Res 24:127–136

    Google Scholar 

  • Venn AA, Wilson MA, Trapido-Rosenthal HG, Keely BJ, Douglas AE (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant Cell Environ 29:2133–2142

    Article  PubMed  CAS  Google Scholar 

  • Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116

    Article  Google Scholar 

  • Vermeij MJA, Delvoye L, Nieuwland G, Bak RPM (2002) Patterns in fluorescence over a Caribbean reef slope: the coral genus Madracis. Photosynthetica 40:423–429

    Article  CAS  Google Scholar 

  • Wyman KD, Dubinsky Z, Porter JW, Falkowski PG (1987) Light-absorption and utilization among hermatypic corals - a study in Jamaica, West-Indies. Mar Biol 96:283–292

    Article  Google Scholar 

  • Yamazaki J (2010) Is light quality involved in the regulation of the photosynthetic apparatus in attached rice leaves? Photosynth Res 105:63–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Zendbank for assisting in molecular work and the Interuniversity Institute for Marine Sciences and staff in Eilat, Israel, for contributing to field studies. We also thank M. Kiflawi and B. Goodman-Tchernov for their shared insight and E. Brokovitch for participating in the technical dives. The research was supported by the Israeli Science Foundation grant # 981/05, the Bundesministerium für Bildung und Forschung, Germany, grant # 1923–1300 and the US National Science Foundation grant # 0920572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Tchernov.

Additional information

Communicated by Biology Editor Dr. Mark Warner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

338_2011_801_MOESM1_ESM.eps

Supplementary data Fig. 1. Density of colonies at the Dekel site (gray) and in the KATZA oil terminal reef (black). Density was surveyed along all bathymetric distributions of the species at each site. Mean and confidence intervals of 95% are presented. Dotted line indicates average photosynthetically active radiation during 2005. n = 501 colonies (EPS 2281 kb)

Supplementary material 2 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nir, O., Gruber, D.F., Einbinder, S. et al. Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30, 1089–1100 (2011). https://doi.org/10.1007/s00338-011-0801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0801-z

Keywords

Navigation