Skip to main content

Advertisement

Log in

Relationships between growth, population dynamics, and environmental parameters in the solitary non-zooxanthellate scleractinian coral Caryophyllia inornata along a latitudinal gradient in the Mediterranean Sea

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The ecology of scleractinian corals may be understood through comparisons between population demographic data and environmental parameters. Growth (growth constant and maximum size) and demographic parameters (population structure stability, instantaneous mortality rate, average age of individuals, percentage of immature individuals, age at maximum biomass, and average age of biomass) of the solitary, non-zooxanthellate, and temperate coral Caryophyllia inornata were investigated at six sites along an 8° latitudinal gradient of temperature and solar radiation (SR) on the western Italian coasts. Growth parameters were homogeneous among populations across the investigated latitudinal range. While demographic parameters were not correlated with depth temperature, populations were progressively less stable and showed a deficiency of young individuals with increasing SR, likely as a result of the lowered energetic resources due to reduced zooplankton availability. These results contrast with data from another Mediterranean non-zooxanthellate solitary coral, Leptopsammia pruvoti, investigated along the same gradient, which shows no correlation between population demography and temperature or SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Airi V, Gizzi F, Falini G, Levy O, Dubinsky Z, Goffredo S (2014) Reproductive efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing temperature along a wide latitudinal gradient. PLoS One 9:e91792

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354

    Article  CAS  Google Scholar 

  • Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr 6:225–244

    Article  Google Scholar 

  • Beverton RJH, Holt SV (1956) A review of methods for estimating mortality rates in fish populations, with special reference to sources of bias in catch sampling. Rapports et Proces-Verbaux des Reunions – Conseil International pour l’Exploration de la Mer 140:67–83

    Google Scholar 

  • Brahmi C, Meibom A, Smith DC, Stolarski J, Auzoux-Bordenave S, Nouet J, Doumenc D, Djediat C, Domart-Coulon I (2010) Skeletal growth, ultrastructure and composition of the non-zooxanthellate scleractinian coral Balanophyllia regia. Coral Reefs 29:175–189

    Article  Google Scholar 

  • Brooke S, Young CM (2005) Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol 146:665–667

    Article  Google Scholar 

  • Cairns SD (1982) Antarctic and sub Antarctic scleractinia. American Geophysical Union, Washington

    Google Scholar 

  • Cairns SD, Häussermann V, Försterra G (2005) A review of the Scleractinia (Cnidaria: Anthozoa) of Chile, with the description of two new species. Zootaxa 1018:15–46

    Google Scholar 

  • Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325

    Article  CAS  PubMed  Google Scholar 

  • Caroselli E, Falini G, Goffredo S, Dubinsky Z, Levy O (2015a) Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral. Front Physiol 6:317. doi:10.3389/fphys.2015.00317

    Article  PubMed  PubMed Central  Google Scholar 

  • Caroselli E, Nanni V, Levy O, Falini G, Dubinsky Z, Goffredo S (2015b) Latitudinal variations in biometry and population density of a Mediterranean solitary coral suggest higher tolerance to seawater warming for non-zooxanthellate species. Limnol Oceanogr 60:1356–1370

    Article  Google Scholar 

  • Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, Goffredo S (2012) Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7:e37848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caroselli E, Prada F, Pasquini L, Nonnis Marzano F, Zaccanti F, Falini G, Levy O, Dubinsky Z, Goffredo S (2011) Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114:255–264

    Article  PubMed  Google Scholar 

  • Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Bio Ecol 302:249–260

    Article  Google Scholar 

  • Carricart-Ganivet JP, Cabanillas-Teran N, Cruz-Ortega I, Blanchon P (2012) Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals. PLoS One 7:e32859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadwick-Furman N, Goffredo S, Loya Y (2000) Growth and population dynamics of the reef coral Fungia granulosa Klunzinger, 1879 at Eilat, northern Red Sea. J Exp Mar Bio Ecol 249:199–218

    Article  PubMed  Google Scholar 

  • Chornesky EA, Peters EC (1987) Sexual reproduction and colony growth in the scleractinian coral Porites astreoides. Biol Bull 172:161–177

    Article  Google Scholar 

  • Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215

    Article  Google Scholar 

  • Cooper TF, De’Ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern great barrier reef. Glob Chang Biol 14:529–538

    Article  Google Scholar 

  • Crossland CJ (1981) Seasonal growth of Acropora cf. formosa and Pocillopora damicornis on a high latitude reef (Houtman Abrolhos, Western Australia). Proc 4th Int Coral Reef Symp 1:663–667

    Google Scholar 

  • D’Ortenzio F, Ribera d’Alcalà M (2009) On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6:139–148

    Article  Google Scholar 

  • Dodge R, Aller RC, Thomson J (1974) Coral growth related to the resuspension of bottom sediments. Nature 247:574–577

    Article  CAS  Google Scholar 

  • Edmunds P, Gates R (2002) Normalizing physiological data for scleractinian corals. Coral Reefs 21:193–197

    Google Scholar 

  • Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989

    Article  Google Scholar 

  • Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68:589–599

    Article  Google Scholar 

  • Fantazzini P, Mengoli S, Pasquini L, Bortolotti V, Brizi L, Mariani M, Di Giosia M, Fermani S, Capaccioni B, Caroselli E, Prada F, Zaccanti F, Levy O, Dubinsky Z, Kaandorp JA, Konglerd P, Hammel JU, Dauphin Y, Cuif J-P, Weaver JC, Fabricius KE, Wagermaier W, Fratzl P, Falini G, Goffredo S (2015) Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat Commun 6:7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gass SE, Roberts JM (2006) The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull 52:549–559

    Article  CAS  PubMed  Google Scholar 

  • Gerrodette T (1979) Ecological studies of two temperate solitary corals. Ph.D. thesis, University of California San Diego, p 112

  • Gittenberger A, Reijnen BT, Hoeksema BW (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contrib Zool 80:107–132

    Google Scholar 

  • Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418

    Google Scholar 

  • Goffredo S, Lasker HR (2008) An adaptive management approach to an octocoral fishery based on Beverton-Holt model. Coral Reefs 27:751–761

    Article  Google Scholar 

  • Goffredo S, Zaccanti F (2004) Laboratory observations of larval behavior and metamorphosis in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Bull Mar Sci 74:449–458

    Google Scholar 

  • Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443

    Article  Google Scholar 

  • Goffredo S, Airi V, Radetić J, Zaccanti F (2006) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 2. Quantitative aspects of the annual reproductive cycle. Mar Biol 148:923–932

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Zaccanti F (2010) Growth and population dynamic model for the non-zooxanthellate temperate solitary coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae). Mar Biol 157:2603–2612

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with solar radiation and sea surface temperature in the Mediterranean Sea. Mar Biol 152:351–361

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationship between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27:623–632

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937

    Article  CAS  Google Scholar 

  • Goffredo S, Marchini C, Rocchi M, Airi V, Caroselli C, Falini G, Levy O, Dubinsky Z, Zaccanti F (2012a) Unusual pattern of embryogenesis of Caryophyllia inornata (Scleractinia, Caryophylliidae) in the Mediterranean Sea: maybe agamic reproduction? J Morphol 273:943–956

    Article  PubMed  Google Scholar 

  • Goffredo S, Caroselli E, Mezzo F, Laiolo L, Vergni P, Pasquini L, Levy O, Zaccanti F, Tribollet A, Dubinsky Z, Falini G (2012b) The puzzling presence of calcite in skeletons of modern solitary corals from the Mediterranean Sea. Geochim Cosmochim Acta 85:187–199

    Article  CAS  Google Scholar 

  • Goffredo S, Prada F, Caroselli E, Capaccioni B, Zaccanti F, Pasquini L, Fantazzini P, Fermani S, Reggi M, Levy O, Fabricius KE, Dubinsky Z, Falini G (2014) Biomineralization control related to population density under ocean acidification. Nat Clim Chang 4:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham EM, Baird AH, Connolly SR (2008) Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27:529–539

    Article  Google Scholar 

  • Grigg RW (1984) Resource management of precious corals: a review and application to shallow water reef building corals. Mar Ecol 5:57–74

    Article  Google Scholar 

  • Grigg RW, Maragos JE (1974) Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55:387–395

    Article  Google Scholar 

  • Hamel JF, Sun Z, Mecier A (2010) Influence of size and seasonal factors on the growth of deep-sea coral Flabellum alabastrum in mesocosm. Coral Reefs 29:521–525

    Article  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 15:281–291

    Article  Google Scholar 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 133–207

    Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Bio Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 171:277–355

    Article  Google Scholar 

  • Hughes TP (1984) Population dynamics based on individual size rather than age: a general model with a reef coral example. Am Nat 128:778–795

    Article  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166

    Article  Google Scholar 

  • Istituto Idrografico della Marina (1982) Atlante delle correnti superficiali dei mari Italiani. Istituto Idrografico della Marina, Genova, Italy

    Google Scholar 

  • Jackson JBC (1986) Modes of dispersal of colonial benthic invertebrates: consequences for species’ distributions and genetic structure of local populations. Bull Mar Sci 39:588–606

    Google Scholar 

  • Johnson KG (1992) Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama. J Exp Mar Bio Ecol 225:253–267

    Google Scholar 

  • Jokiel PL, Guinther EB (1978) Effects of temperature on reproduction in the hermatypic coral Pocillopora damicornis. Bull Mar Sci 28:786–789

    Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Article  Google Scholar 

  • Kitahara MV, Cairns SD, Miller DJ (2010) Monophyletic origin of Caryophyllia (Scleractinia, Caryophylliidae), with descriptions of six new species. System Biodivers 8:91–118

    Article  Google Scholar 

  • Knittweis L, Jompa J, Richter C, Wolff M (2009) Population dynamics of the mushroom coral Heliofungia actiniformis in the Spermonde Archipelago, South Sulawesi, Indonesia. Coral Reefs 28:793–804

    Article  Google Scholar 

  • Kozłowski J, Wiegert RG (1986) Optimal allocation of energy to growth and reproduction. Theor Popul Biol 29:16–37

    Article  PubMed  Google Scholar 

  • Krief S, Hendy EJ, Fine M, Yam R, Meibom A, Foster GL, Shemesh A (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74:4988–5001

    Article  CAS  Google Scholar 

  • Kružić P, Sršen P, Benković L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491

    Article  Google Scholar 

  • Lasker HR (1990) Clonal propagation and population dynamics of a gorgonian coral. Ecology 71:1578–1589

    Article  Google Scholar 

  • Leuzinger S, Willis BL, Anthony KR (2012) Energy allocation in a reef coral under varying resource availability. Mar Biol 159:177–186

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Bio Ecol 245:225–243

    Article  PubMed  Google Scholar 

  • Marchini C, Airi V, Fontana R, Tortorelli G, Rocchi M, Falini G, Levy O, Dubinsky Z, Goffredo S (2015) Annual reproductive cycle and unusual embryogenesis of a temperate coral in the Mediterranean Sea. PLoS One 10:e0141162

    Article  PubMed  PubMed Central  Google Scholar 

  • Muscatine L, Falkowski PG, Dubinsky Z, Cook PA, McCloskey LR (1989) The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc R Soc Lond B Biol Sci 236:311–324

    Article  Google Scholar 

  • Orejas C, Ferrier-Pagès C, Reynaud S, Gori A, Beraud E, Tsounis G, Gili JM (2011) Long-term growth rates of four Mediterranean cold-water coral species maintained in aquaria. Mar Ecol Prog Ser 429:57–65

    Article  Google Scholar 

  • Pauly D (1984) Fish population dynamics in tropical waters: a manual for use with programmable calculators. International Center for Living and Aquatic Resources Management, Manila, The Philippines

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201

    Article  Google Scholar 

  • Peirano A, Damasso V, Montefalcone M, Morri C, Bianchi CN (2005) Effects of climate, invasive species and anthropogenic impacts on the growth of the seagrass Posidonia oceanica (L.) Delile in Liguria (NW Mediterranean Sea). Mar Pollut Bull 50:817–822

    Article  CAS  PubMed  Google Scholar 

  • Purser A, Larsson AI, Thomsen L, Van Oevelen D (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Bio Ecol 395:55–62

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso JP (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang Biol 9:1660–1668

    Article  Google Scholar 

  • Roberts JM, Long D, Wilson JB, Mortensen PB, Gage JD (2003) The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related? Mar Pollut Bull 46:7–20

    Article  CAS  PubMed  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Pagès C (2006) Response of zooxanthellae in symbiosis with Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pagès C (2008) Effect of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 21:17–25

    Article  Google Scholar 

  • Sakai K (1998) Effect of colony size, polyp size, and budding mode of egg production in a colonial coral. Biol Bull 195:319–325

    Article  Google Scholar 

  • Sebens KP (1987) The ecology of indeterminate growth in animals. Annu Rev Ecol Syst 18:371–407

    Article  Google Scholar 

  • Sparre P, Venema SC (1998) Introduction to tropical fish stock assessment. Part 1: Manual. FAO Fisheries Technical Paper No. 306, Rev. 2. FAO, Rome

  • Sparre P, Ursin E, Venema SC (1989) Introduction to tropical fish stock assessment. FAO Fisheries Technical Paper. FAO, Rome

  • Squires DF (1959) Deep-sea corals collected by the Lamont geological observatory. 1. Atlantic corals. Am Mus Novit 165:1–42

    Google Scholar 

  • Teixidó N, Garrabou J, Harmelin JG (2011) Low dynamics, high longevity and persistence of sessile structural species dwelling on Mediterranean coralligenous outcrops. PLoS One 6:e23744

    Article  PubMed  PubMed Central  Google Scholar 

  • Vertino A, Savini A, Rosso A, Di Geronimo I, Mastrototaro F, Sanfilippo R, Etiope G (2010) Benthic habitat characterization and distribution from two representative sites of the deep-water SML Coral Province (Mediterranean). Deep Sea Res Part 2 Top Stud Oceanogr 57:380–396

    Article  Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213

    Google Scholar 

  • Vongsavat V, Winotai P, Meejoo S (2006) Phase transitions of natural corals monitored by ESR spectroscopy. Nucl Instrum Methods Phys Res B 243:167–173

    Article  CAS  Google Scholar 

  • Yamashiro H, Nishihira M (1998) Experimental study of growth and asexual reproduction in Diaseris distorta (Michelin, 1843), a free-living fungiid coral. J Exp Mar Bio Ecol 225:253–267

    Article  Google Scholar 

  • Zibrowius H (1980) Les scléractiniaires de la Méditeranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284

    Google Scholar 

Download references

Acknowledgments

We wish to thank S. Branchini, F. Gizzi, M. Marinozzi, S. Prantoni, and F. Turano for their underwater assistance. The diving centers Centro Immersioni Pantelleria, Il Pesciolino, Bubble Lounge, and Sub Maldive supplied logistics in the field. The Scientific Diving School (www.sdseducational.org) supplied scientific, technical, and logistical support. Coral photographs are provided by G. Neto (www.giannineto.it). We thank H. Matz for manuscript proofreading. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. [249930-CoralWarm: Corals and global warming: the Mediterranean versus the Red Sea].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Goffredo.

Additional information

Communicated by Biology Editor Dr. Mark J. A. Vermeij

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caroselli, E., Ricci, F., Brambilla, V. et al. Relationships between growth, population dynamics, and environmental parameters in the solitary non-zooxanthellate scleractinian coral Caryophyllia inornata along a latitudinal gradient in the Mediterranean Sea. Coral Reefs 35, 507–519 (2016). https://doi.org/10.1007/s00338-015-1393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1393-9

Keywords

Navigation