Skip to main content
Log in

Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The demographic characteristics of the solitary zooxanthellate scleractinian Balanophyllia europaea, endemic to the Mediterranean, were determined in six populations, on a latitudinal gradient along the Italian coast, and compared with the mean annual sea surface temperature (SST). Growth rate correlated negatively, and asymptotic length of the individuals positively with SST. With increasing SST, the distributions of age frequencies moved away from a typical steady state structure (i.e., exponential decrease in the frequency of individuals with age), indicating less stable populations and showed a deficiency of individuals in the younger-age classes. These observations suggest that high temperatures are an adverse factor to the B. europaea symbiosis. Using projected increases in seawater temperature, most of the B. europaea populations in the Mediterranean are expected to be close to their thermal limits by 2100 and the populations at that time may support few young individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354

    CAS  Google Scholar 

  • Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr 6:225–244

    Article  Google Scholar 

  • Bak RPM, Meesters EH (1999) Population structure as a response of coral communities to global change. Am Zool 39:56–65

    Google Scholar 

  • Beverton RJH, Holt SV (1956) A review of methods for estimating mortality rates in fish populations, with special reference to sources of bias in catch sampling. Rapports et Proces-Verbaux des Reunions - Conseil International pour l’Exploration de la Mer 140:67–83

    Google Scholar 

  • Bosscher H (1993) Computerized tomography and skeletal density of coral skeletons. Coral Reefs 12:97–103

    Article  Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14:179–200

    Article  Google Scholar 

  • Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260

    Article  Google Scholar 

  • Chadwick-Fuman NE, Goffredo S, Loya Y (2000) Growth and population dynamic model of the reef coral Fungia granulosa Kluzinger, 1879 at Eilat, northern Red Sea. J Exp Mar Biol Ecol 249:199–218

    Article  Google Scholar 

  • Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215

    Article  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M (2000) Seasonality in coastal ecosystems. Trends Ecol Evol 12:448–453

    Article  Google Scholar 

  • Connell JH (1973) Population ecology of reef building corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol. II: biology 1. Academic, New York, pp 271–324

    Google Scholar 

  • Cooper TF, De’ath G, Fabricius KE, Lough JM (2007) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Global Change Biol 14:529–538

    Article  Google Scholar 

  • Crossland CJ (1981) Seasonal growth of Acropora cf. formosa and Pocillopora damicornis on a high latitude reef (Houtman Abrolhos, Western Australia). Proc 4th Int Coral Reef Symp 1:663–667

    Google Scholar 

  • Cushman JH, Lawton JH, Manly BFJ (1993) Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia 95:30–37

    Google Scholar 

  • Diaz-Almela E, Marbà N, Duarte CM (2007) Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Global Change Biol 13:224–235

    Article  Google Scholar 

  • Edmunds PJ (2004) Juvenile coral population dynamics track rising seawater temperature on a Caribbean reef. Mar Ecol Prog Ser 269:111–119

    Article  Google Scholar 

  • Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68:589–599

    Article  Google Scholar 

  • Epstein N, Bak RPM, Rinkevich B (2001) Strategies for gardening denuded coral reef areas: the applicability of using different types of coral material for reef restoration. Restor Ecol 9:432–442

    Article  Google Scholar 

  • Fabens AJ (1965) Properties and fitting of the von Bertalanffy growth curve. Growth 29:265–289

    PubMed  CAS  Google Scholar 

  • Fadlallah YH (1983) Population dynamics and life history of a solitary coral, Balanophyllia elegans, from Central California. Oecologia 58:200–207

    Article  Google Scholar 

  • Fine M, Zibrowius H, Loya Y (2001) Oculina patagonica: a non-lessepsian scleractinian coral invading the Mediterranean Sea. Mar Biol 138:1195–1203

    Article  Google Scholar 

  • Foster AB, Johnson KG, Schultz LL (1988) Allometric shape change and heterocrony in the freeliving coral Trachyphyllia bilobata (Duncan). Coral Reefs 7:37–44

    Article  Google Scholar 

  • Glassom D, Chadwick NE (2006) Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar Ecol Prog Ser 318:111–122

    Article  Google Scholar 

  • Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418

    Google Scholar 

  • Goffredo S, Lasker HR (2006) Modular growth of a gorgonian coral can generate predictable patterns of colony growth. J Exp Mar Biol Ecol 336:221–229

    Article  Google Scholar 

  • Goffredo S, Zaccanti F (2004) Laboratory observations of larval behavior and metamorphosis in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Bull Mar Sci 74:449–458

    Google Scholar 

  • Goffredo S, Arnone S, Zaccanti F (2002) Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Mar Ecol Prog Ser 229:83–94

    Article  Google Scholar 

  • Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443

    Article  Google Scholar 

  • Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and demography of solitary corals with environmental factors in the Mediterranean Sea. Mar Biol 152:351–361

    Article  Google Scholar 

  • Grigg RW (1974) Growth rings: annual periodicity in two gorgonian corals. Ecology 55:876–881

    Article  Google Scholar 

  • Grigg RW (1975) Age structure of a longevous coral: a relative index of habitat suitability and stability. Am Nat 109:647–657

    Article  Google Scholar 

  • Grigg RW (1982) Darwin point: a threshold for atoll formation. Coral Reefs 1:29–34

    Article  Google Scholar 

  • Grigg RW (1984) Resource management of precious corals: a review and application to shallow water reef building corals. PSZNI Mar Ecol 5:57–74

    Article  Google Scholar 

  • Guzner B, Novoplansky A, Chadwick NE (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150

    Article  Google Scholar 

  • Harriott VJ (1999) Coral growth in subtropical eastern Australia. Coral Reefs 18:281–291

    Article  Google Scholar 

  • Helmle KP, Dodge RE, Ketcham RA (2000) Skeletal architecture and density banding in Diploria strigosa by X-ray computed tomography. Proc 9th Int Coral Reef Symp 1:365–371

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  PubMed  CAS  Google Scholar 

  • Houlbrèque F, Tambuttè E, Allemand D, Ferrier-Pagès C (2004) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469

    Article  PubMed  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166

    Article  Google Scholar 

  • Hughes TP, Ayre D, Connell JH (1992) The evolutionary ecology of corals. Trends Ecol Evol 7:292–295

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Nature 301:929–933

    CAS  Google Scholar 

  • Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae: II. Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148

    Article  CAS  Google Scholar 

  • Johnson KG (1992) Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama. J Exp Mar Biol Ecol 164:171–191

    Article  Google Scholar 

  • Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215

    Article  Google Scholar 

  • Kinsey DW, Davies PJ (1979) Carbon turnover calcification and growth in coral reefs. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral forming elements. Elsevier, Amsterdam, pp 131–162

    Chapter  Google Scholar 

  • Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualism on coral reefs: the host as a habitat. Am Nat 162:S51–S62

    Article  PubMed  Google Scholar 

  • Knuston DW, Buddemeir RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272

    Article  Google Scholar 

  • Lasker HR (1981) Phenotypic variation in the coral Montastrea cavernosa and its effects on colony energetics. Biol Bull 160:292–302

    Article  Google Scholar 

  • Lonsdale DJ, Levinton JS (1985) Latitudinal differentiation in copepod growth: an adaptation to temperature. Ecology 66:1397–1407

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243

    Article  PubMed  Google Scholar 

  • Loya Y (1976) The Red Sea coral Stylophora pistillata is an r-strategist. Nature 259:478–480

    Article  Google Scholar 

  • Marquet PA, Navarrete SA, Castilla JC (1990) Scaling population density to body size in rocky intertidal communities. Science 250:1125–1127

    Article  PubMed  Google Scholar 

  • Mc Neil BI, Matear RJ, Barnes DJ (2004) Coral reef calcification and climate change: the effect of ocean warming. Geophys Res Lett 31:L22309

    Article  Google Scholar 

  • Meesters EH, Hilterman M, Kardinaal E, Keetman M, deVries M, Bak RPM (2001) Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar Ecol Prog Ser 209:43–54

    Article  Google Scholar 

  • Mistri M, Ceccherelli VU (1994) Growth and secondary production of the Mediterranean gorgonian Paramuricea clavata. Mar Ecol Prog Ser 103:291–296

    Article  Google Scholar 

  • Olabarria C, Thurston MH (2003) Latitudinal and bathymetric trends in body size of the deep-sea gastropod Troschelia berniciensis (King). Mar Biol 143:723–730

    Article  Google Scholar 

  • Pauly D (1984) Fish population dynamics in tropical waters: a manual for use with programmable calculators. International Center for Living Aquatic Resources Management, Manila

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201

    Article  Google Scholar 

  • Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calyx growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409

    Article  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso JP (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668

    Article  Google Scholar 

  • Rinkevich B (1989) The contribution of photosynthetic products to coral reproduction. Mar Biol 101:259–263

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Pagès C (2006) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55

    Article  Google Scholar 

  • Ross MA (1984) A quantitative study of the stony coral fishery in Cebu, Philippines. PSZNI Mar Ecol 5:75–91

    Article  Google Scholar 

  • Roy K, Martien KK (2001) Latitudinal distribution of body size in north-eastern Pacific marine bivalves. J Biogeogr 28:485–493

    Article  Google Scholar 

  • Shenkar N, Fine M, Loya Y (2005) Size matters: bleaching dynamics of the coral Oculina patagonica. Mar Ecol Prog Ser 294:181–188

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor MMB, Miller HL (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Sparre P, Ursin E, Venema SC (1989) Introduction to tropical fish stock assessment. FAO Fisheries Technical Paper, Rome

  • Tsounis G, Rossi S, Gili JM, Arntz WE (2007) Red coral fishery at the Costa Brava (NW Mediterranean): case study of an overharvested precious coral. Ecosystems 10:975–986

    Article  Google Scholar 

  • Turner JRG, Lennon JJ (1989) Species richness and energy theory. Nature 340:351

    Article  Google Scholar 

  • Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth and variation in life-history strategy. Coral Reefs 25:59–71

    Article  Google Scholar 

  • Visram S, Wiedenmann J, Douglas AE (2006) Molecular diversity of symbiotic algae of the genus Symbiodinium (Zooxanthellae) in cnidarians of the Mediterranean Sea. J Mar Biol Assoc UK 86:1281–1283

    Article  CAS  Google Scholar 

  • von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213

    Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506

    Article  Google Scholar 

  • Zibrowius H (1980) Les scléractiniaires de la Méditeranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284

    Google Scholar 

Download references

Acknowledgments

We wish to thank L. Bortolazzi, A. Comini, M. Ghelia, G. Neto, L. Tomesani, Centro Immersioni Pantelleria, Il Pesciolino, Polo Sub, and Sub Maldive, Bologna Scuba Team, Scientific Diving School, Marine Science Group, J. Bilewitch (State University of New York at Buffalo), and M. Mukherjee (University of Georgia) for help and assistance, and two anonymous reviewers for their comments on the manuscript. This research was financed by the Associazione dei Tour Operator Italiani, the Marine & Freshwater Science Group Association, the Canziani foundation of the Department of Evolutionary and Experimental Biology of the Alma Mater Studiorum, University of Bologna, and the Ministry of Education, University and Research. This study is dedicated to the memory of U. Pepoli. The experiments complied with current Italian law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Goffredo.

Additional information

Communicated by Environment Editor Prof. van Woesik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffredo, S., Caroselli, E., Mattioli, G. et al. Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27, 623–632 (2008). https://doi.org/10.1007/s00338-008-0362-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-008-0362-y

Keywords

Navigation