Skip to main content

Advertisement

Log in

Formalising a mechanistic linkage between heterotrophic feeding and thermal bleaching resistance

  • Perspective
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

In this paper, I utilise the CO2 (sink) limitation model of coral bleaching to propose a new biochemical framework that explains how certain (well-adapted) coral species can utilise heterotrophic carbon acquisition to combat the damaging algal photoinhibition response sequence that underpins thermal bleaching, thereby increasing thermal bleaching resistance. This mechanistic linkage helps to clarify a number of previously challenging experimental responses arising from feeding (versus starved) temperature stress experiments, and isotope labelling (tracer) experiments with heterotrophic carbon sources (e.g., zooplankton). In an era of rapidly warming surface ocean temperatures, the conferred fitness benefits arising from such a mechanistic linkage are considerable. Yet, various ecological constraints are outlined which caution against the ultimate benefit of the mechanism for raising bleaching thresholds at the coral community (reef) scale. Future experiments are suggested that can strengthen these proposed arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainsworth TD, Hoegh-Guldberg O, Heron SF, Skirving WJ, Leggat W (2008) Early cellular changes are indicators of pre-bleaching thermal stress in the coral host. J Exp Mar Biol Ecol 364:63–71

    Article  Google Scholar 

  • Anthony KRN (2006) Enhanced energy status of corals on coastal, high-turbidity reefs. Mar Ecol Prog Ser 319:111–116

    Article  Google Scholar 

  • Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R (2009) Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Funct Ecol 23:539–550

    Article  Google Scholar 

  • Baghooli R (2013) Inhibition of Calvin-Benson cycle suppresses the repair of photosystem II in Symbiodinium: implications for coral bleaching. Hydrobiologia. doi:10.1007/s107-013-1535-4

    Google Scholar 

  • Barnes RD (1987) Invertebrate zoology. Saunders, Philadelphia

    Google Scholar 

  • Bertucci A, Moya A, Tambutte S, Allemand D, Supuran CT, Zoccola D (2013) Carbonic anhydrases in anthozoan corals – A review. Bioorg Med Chem 21:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Borell EM, Bischof K (2008) Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia 157:593–601

    Article  PubMed  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:s129–s138

    Article  Google Scholar 

  • Buxton L, Takahashi S, Hill R, Ralph PJ (2012) Variability in the primary site of photosynthesis damage in Symbiodinium sp. (Dinophyceae) exposed to thermal stress. J Phycol 48:117–126

    Article  CAS  Google Scholar 

  • Coles SL, Jokiel PL (1977) Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar Biol 43:209–216

    Article  CAS  Google Scholar 

  • Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob Chang Biol 16:851–863

    Article  Google Scholar 

  • Fabricius K, Cseke S, Humphrey C, De’ath G (2013) Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework. PLoS One 8(1):e54399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrier-Pagès C, Rottier C, Beraud E, Levy O (2010) Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: Effect on the rates of photosynthesis. J Exp Mar Biol Ecol 390:118–124

    Article  Google Scholar 

  • Goiran C, Al-Moghrabi S, Allemand D, Jaubert J (1996) Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J Exp Mar Biol Ecol 199:207–225

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Hoogenboom MO, Campbell DA, Beraud E, DeZeeuw K, Ferrier-Pagès C (2012) Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I or coral symbionts. PLoS One 7(1):e30167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houlbrèque F, Tambutté E, Richard C, Ferrier-Pagès C (2004) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Hughes AD, Grottoli AG (2013) Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS One 8(11):e81172

    Article  PubMed Central  PubMed  Google Scholar 

  • Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162

    Article  Google Scholar 

  • Jones RJ (2004) Testing the ‘photoinhibition’ model of coral bleaching using chemical inhibitors. Mar Ecol Prog Ser 284:133–145

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Scheiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Lesser MP (1996) Exposure of symbiotic dinoflagellates to elevated temperatures and ultraviolet radiation causes oxidative stress and inhibits photosynthesis. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP (2013) Using energetic budgets to assess the effects of environmental stress on corals: are ee measuring the right things? Coral Reefs 32:25–33

    Article  Google Scholar 

  • Levas SJ, Grottoli AG, Hughes A, Osburn CL, Matsui Y (2013) Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals. PLoS One 8:e63267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy O, Dubinsky Z, Achituv Y, Erez J (2006) Diurnal polyp expansion behaviour in stony corals may enhance carbon availability for symbiont photosynthesis. J Exp Mar Biol Ecol 333:1–11

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition: I. & #x03B4;13C of zooxanthellae and animal tissue vs. depth. Mar Biol 100:185–193

    Article  Google Scholar 

  • Oakley CA, Schmidt GW, Hopkinson BM (2014) Thermal responses of Symbiodinium photosynthetic carbon assimilation. Coral Reefs. doi:10.1007/s00338-014-1130-9

    Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89

    Article  Google Scholar 

  • Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol 367:180–188

    Article  CAS  Google Scholar 

  • Piontkovski SA, Castellani C (2009) Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632:365–370

    Article  Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef building corals. Am Nat 110:731–742

    Article  Google Scholar 

  • Reynaud S, Ferrier-Pages C, Sambrotto R, Juillet-Leclerc A, Jaubert J, Gattuso JP (2002) Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser 238:81–89

    Article  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged ‘bleaching’ on the tissue biomass and reproduction of the reef coral Montastraea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Tada K, Sakai K, Nakano Y, Takemura A, Montani S (2003) Size fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. J Plankton Res 25:991–997

    Article  CAS  Google Scholar 

  • Tremblay P, Grover R, Maguer JF, Legendre L, Ferrier-Pagès C (2012) Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215:1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Tremblay P, Grover R, Mauger JF, Hoogenboom M, Ferrier-Pagès C (2014) Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata. Coral Reefs 33:1–13

    Article  Google Scholar 

  • Trench RK (1993) Microalgal-invertebrate symbioses: a review. Endocytobiosis Cell Res 9:135–175

    Google Scholar 

  • True JD (2005) Massive Porites corals as indicators of environmental change. PhD thesis, James Cook University, Townsville, Australia

  • Ulstrup KE, Hill R, Ralph PJ (2005) Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 286:125–132

    Article  Google Scholar 

  • Vega-Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Chang Biol 20:544–554

    Article  PubMed  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber JN, Woodhead PMJ (1970) C and O isotope fractionation in the skeletal carbonate of reef-building corals. Chem Geol 6:93–117

    Article  CAS  Google Scholar 

  • Wooldridge SA (2009a) A new conceptual model for the warm-water breakdown of the coral-algae endosymbiosis. Mar Freshw Res 60:483–496

    Article  CAS  Google Scholar 

  • Wooldridge SA (2009b) A new conceptual model for the enhanced release of mucus in symbiotic reef corals during ‘bleaching’ conditions. Mar Ecol Prog Ser 396:145–152

    Article  CAS  Google Scholar 

  • Wooldridge SA (2010) Is the coral-algae symbiosis really mutually-beneficial for the partners? BioEssays 32:615–625

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2013) A new conceptual model of coral biomineralisation: hypoxia as the physiological driver of skeletal extension. Biogeosciences 10:2867–2884

    Article  CAS  Google Scholar 

  • Wooldridge SA (2014) Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs. doi:10.1007/s00338-013-1111-4

    Google Scholar 

  • Wooldridge SA, Done TJ (2009) Improved water quality can ameliorate effects of climate change on corals. Ecol Appl 19:1492–1499

    Article  PubMed  Google Scholar 

  • Zhu B, Wang G, Huang B, Tseng CK (2004) Effects of temperature, hypoxia, ammonia and nitrate on the bleaching among three coral species. Chinese Sci Bull 49:1923–1928

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The paper benefited from the constructive comments and suggestions of three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Wooldridge.

Additional information

Communicated by Biology Editor Dr. Mark Vermeij

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wooldridge, S.A. Formalising a mechanistic linkage between heterotrophic feeding and thermal bleaching resistance. Coral Reefs 33, 1131–1136 (2014). https://doi.org/10.1007/s00338-014-1193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-014-1193-7

Keywords

Navigation