Skip to main content
Log in

Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Corallimorpharians may dominate some habitats on coral reefs and compete with stony corals for access to light, yet little is known concerning their photosynthetic traits. At Eilat in the northern Red Sea, we observed that the abundance of individuals of the corallimorpharian Rhodactis rhodostoma decreased significantly with depth on the reef slope. Field and laboratory experiments revealed that they employ several mechanisms of photoadaptation to high irradiance on the shallow reef flat. Their endosymbiotic microalgae (zooxanthellae) varied significantly in both abundance and chlorophyll content with level of irradiance. Use of a diving pulse amplitude modulated fluorometer revealed that the zooxanthellae of R. rhodostoma effectively disperse excess light energy by expressing significantly higher values of non-photochemical quenching and maximum excitation pressure on photosystem II when experimentally exposed to high light (HL) versus low light (LL). Host corallimorpharian tissues mediated this response by shielding the algal symbionts from high irradiance. The endoderm of host tentacles thickened significantly and microalgal cells were located further from the mesoglea in HL than in LL. The clades of zooxanthellae hosted by the corallimorpharians also varied with depth. In shallow water, all sampled individuals hosted clade C zooxanthellae, while in deep water the majority hosted clade D. The photosynthetic output of individuals of R. rhodostoma was less affected by HL than was that of a stony coral examined. When exposed to both high temperature (HT) and HL, individuals of R. rhodostoma reduced their maximum quantum yield, but not when exposed to HL at low temperature (LT). In contrast, colonies of the scleractinian coral Favia favus reduced their photosynthetic output when exposed to HL in both temperature regimes. After 2 weeks of HT stress, R. rhodostoma polyps appeared to bleach completely but re-established their zooxanthella populations upon return to ambient temperature. We conclude that mechanisms of photoadaptation to high irradiance employed by both the endosymbiotic zooxanthellae and host corallimorpharians may explain in part the abundance of R. rhodostoma on some shallow reef flats. The ability to survive for weeks at HT while bleached also may allow corallimorpharians to repopulate shallow reef areas where scleractinians have been killed by thermal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker A (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  Google Scholar 

  • Barneah O, Weis VM, Perez S, Benayahu Y (2004) Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Mar Ecol Prog Ser 275:89–95

    Article  CAS  Google Scholar 

  • Beer S, Ilan M, Eshel A, Weil A, Brickner I (1998) Use of pulse amplitude modulated (PAM) fluorometry for in situ measurements of photosynthesis in two Red Sea faviid corals. Mar Biol 131:607–612

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2003) Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291:181–197

    Article  Google Scholar 

  • Brown BE, Letissier MDA, Bythell JC (1995) Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Mar Biol 122:655–663

    Article  Google Scholar 

  • Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062

    Article  CAS  Google Scholar 

  • Chadwick NE (1991) Spatial distribution and the effects of competition on some temperate Scleractinia and Corallimorpharia. Mar Ecol Prog Ser 70:39–48

    Article  Google Scholar 

  • Chadwick-Furman NE, Spiegel M (2000) Abundance and clonal replication in the tropical corallimorpharian Rhodactis rhodostoma. Invertebr Biol 119:351–360

    Article  Google Scholar 

  • Chadwick-Furman NE, Nir I, Spiegel M (2000) Sexual reproduction in the tropical corallimorpharian Rhodactis rhodostoma. Invertebr Biol 119:361–369

    Article  Google Scholar 

  • Chomski O, Kamenir Y, Hyams M, Dubinsky Z, Chadwick-Furman NE (2004) Effects of temperature on growth rate and body size in the Mediterranean Sea anemone Actinia equina. J Exp Mar Biol Ecol 313:63–73

    Article  Google Scholar 

  • Cikala M, Wilm B, Hobmayer E, Bottger A, David CN (1999) Identification of caspases and apoptosis in the simple metazoan Hydra. Curr Biol 9:959–962

    Article  CAS  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  CAS  Google Scholar 

  • Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325

    Article  CAS  Google Scholar 

  • Daly M, Fautin DG, Cappola VA (2003) Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zool J Linn Soc Lond 139:419–437

    Article  Google Scholar 

  • Dunn SR, Bythell JC, Le Tissier MDA, Burnett WJ, Thomason JC (2002) Programmed cell death and cell necrosis activity during hyperthermic stress induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53

    Article  Google Scholar 

  • Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222

    Article  CAS  Google Scholar 

  • Elliott J, Cook CB (1989) Diel variation in prey capture behavior by the corallimorpharian Discosoma sanctithomae: mechanical and chemical activation of feeding. Biol Bull 176:218–228

    Article  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, ahermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Fine M, Loya Y (2002) Endolithic algae and coral bleaching. Proc R Soc Lond B Biol Sci 269:1205–1210

    Article  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Hamner WM, Dunn DF (1980) Tropical corallimorpharia (Coelenterata: Anthozoa): feeding by envelopment. Micronesica 16:37–41

    Google Scholar 

  • den Hartog JC (1977) The marginal tentacles of Rhodactis sanctithomae (Corallimorpharia) and the sweeper tentacles of Montastrea cavernosa (Scleractinia): their cnidom and possible function. Proceeding of the 3rd international coral reef symposium Miami 1:463–469

  • den Hartog JC (1980) Caribbean shallow water Corallimorpharia. Zool Verh 176:1–82

    Google Scholar 

  • Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86

    Article  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrometric equation for determining chlorophyll a, b and c2 on higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Karako-Lampert S, Katcoff DJ, Achituv Y, Dubinsky Z, Stambler N (2004) Do clades of symbiotic dinoflagellates in scleractinan corals of the Gulf of Eilat (Red Sea) differ from those of other coral reefs? J Exp Mar Biol Ecol 311:301–314

    Article  Google Scholar 

  • Kinzie RA, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200:51–58

    Article  Google Scholar 

  • Kuguru BL, Mgaya YD, Ohman MC, Wagner GM (2004) The reef environment and competitive success in the Corallimorpharia. Mar Biol 145:875–884

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiontic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC, Trench RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol Bull 199:126–134

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WK, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, Done T, deVantier L, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004) Closely-related Symbiodinium spp. differ in relative dominance within coral reef host communities across environmental, latitudinal, and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • Langmead O, Chadwick-Furman NE (1999) Marginal tentacles of the corallimorpharian Rhodactis rhodostoma. 1. Role in competition for space. Mar Biol 134:479–489

    Article  Google Scholar 

  • Loya Y (1985) Seasonal changes in the growth rate of a Red Sea coral population. Proceedings of the 5th international coral reef congress Tahiti 6:187–191

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, Van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Maxwell DP, Falk S, Trick CG, Huner NPA (1994) Growth at low temperature mimics highlight acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    Article  CAS  Google Scholar 

  • Maxwell DP, Falk S, Huner NPA (1995) Photosystem II excitation pressure and development of resistance to photoinhibition. Plant Physiol 107:687–694

    Article  CAS  Google Scholar 

  • Medina M, Collins AG, Takaoka TL, Kuehl JV, Boor JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci USA 103:9096–9100

    Article  CAS  Google Scholar 

  • Muhando CA, Kuguru BL, Wagner GM, Mbije NE, Ohman MC (2002) Environmental effects on the distribution of corallimorpharians in Tanzania. Ambio 31:558–561

    Article  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Rowan R (2004) Coral bleaching—thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991a) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991b) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Schlichter D (1982) Epidermal nutrition of the alcyonarian Heteroxenia fuscescens (Ehrb.): absorption of dissolved organic material and lost endogenous photosynthates. Oecologia 53:40–49

    Article  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulz ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin Heidelberg New York, 100:49–70

    Chapter  Google Scholar 

  • Sheppard CRC, Sheppard ALS (1991) Corals and coral communities of Arabia. Fauna Saudi Arabia 12:1–170

    Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  CAS  Google Scholar 

  • Titlyanov E, Bil K, Fomina I, Titlyanov T, Leletkin V, Eden N, Malkin A, Dubinsky Z (2000) Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Mar Biol 137:463–472

    Article  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  Google Scholar 

  • Warner ME, Chilcoat GC, Mcfarland FK, Fitt WK (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar Biol 141:31–38

    Article  CAS  Google Scholar 

  • Winters G, Loya Y, Rottgers R, Beer S (2003) Photoinhibition in shallow-water colonies of the coral Stylophora pistillata as measured in situ. Limnol Oceanogr 48:1388–1393

    Article  Google Scholar 

  • Zakai D, Dubinsky Z, Avishai A, Caaras T, Chadwick NE (2006) Lunar periodicity of planula release in the reef-building coral Stylophora pistillata. Mar Ecol Prog Ser 311:93–102

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tally Levanon, Yonatan Belmaker, Omer Polak, Barak Guzner, and Karen Tarnaruder of the IUI for assistance during this project. We also thank Itzik Brikner for the histological preparations. This research was supported by funds from Bar Ilan University and Auburn University to NEC. This research is submitted in partial fulfillment of the requirements for the Ph.D. by BK at Bar Ilan University and GW at Tel Aviv University. Experiments performed in this study comply with the current laws of Israel. This is contribution number 10 of the Auburn University Marine Biology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanette E. Chadwick.

Additional information

Communicated by P.W. Sammarco, Chauvin.

B. Kuguru and G. Winters contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuguru, B., Winters, G., Beer, S. et al. Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Mar Biol 151, 1287–1298 (2007). https://doi.org/10.1007/s00227-006-0589-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0589-5

Keywords

Navigation