Skip to main content

Advertisement

Log in

Genetic assessment of connectivity in the common reef sponge, Callyspongia vaginalis (Demospongiae: Haplosclerida) reveals high population structure along the Florida reef tract

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The genetic population structure of the common branching vase sponge, Callyspongia vaginalis, was determined along the entire length (465 km) of the Florida reef system from Palm Beach to the Dry Tortugas based on sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene. Populations of C. vaginalis were highly structured (overall ΦST = 0.33), in some cases over distances as small as tens of kilometers. However, nonsignificant pairwise ΦST values were also found between a few relatively distant sampling sites suggesting that some long distance larval dispersal may occur via ocean currents or transport in sponge fragments along continuous, shallow coastlines. Indeed, sufficient gene flow appears to occur along the Florida reef tract to obscure a signal of isolation by distance, but not to homogenize COI haplotype frequencies. The strong genetic differentiation among most of the sampling locations suggests that recruitment in this species is largely local source-driven, pointing to the importance of further elucidating general connectivity patterns along the Florida reef tract to guide the spatial scale of management efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Almany GR, Connolly SR, Heath DD, Hogan JD, Jones GP, McCook LJ, Mills M, Pressey RL, Williamson DH (2009) Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs 28:339–351

    Article  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) A marine Wallace’s line? Nature 406:692–693

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2004) MIGRATE: Documentation and Program, Part of LAMARC, Version 2.0. Revised December 23, 2004. http://evolution.gs.washington.edu/lamarc.html

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum-likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  CAS  PubMed  Google Scholar 

  • Bentlage B, Wörheide G (2007) Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences. Coral Reefs 26:807–816

    Article  Google Scholar 

  • Blanquer A, Uriz MJ, Caujapé-Castells (2009) Small-scale spatial genetic structure in Scopalina lophyropoda, an encrusting sponge with philopatric larval dispersal and frequent fission and fusion events. Mar Ecol Prog Ser 380:95–102

    Article  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154

    Article  CAS  PubMed  Google Scholar 

  • Causey B (2008) Coral reefs of the U.S. Caribbean: The history of massive coral bleaching and other perturbations in the Florida Keys. In: Wilkinson C, Souter D (eds) Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Center, Townsville, Australia, pp 61–67

    Google Scholar 

  • Causey B, Delaney J, Diaz E, Dodge D, Garcia J, Higgins J, Keller B, Kelty R, Jaap W, Matos C, Schmahl G, Rogers C, Miller M, Turgeon D (2002) Status of coral reefs in the U.S. Caribbean and Gulf of Mexico: Florida, Texas, Puerto Rico, US Virgin Islands, Navassa. In: Wilkinson C (ed) Status of Coral Reefs of the World. Australian Institute of Marine Science, Townsville, Australia, pp 251–276

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Collin R (2001) The effects of mode of development on phylogeography and population structure of North Atlantic Crepidula (Gastropoda: Calyptraeidae). Mol Ecol 10:2249–2262

    Article  CAS  PubMed  Google Scholar 

  • Corredor JE, Wilkinson CR, Vicente VP, Morell JM, Otero E (1988) Nitrate release by Caribbean reef sponges. Limnol Oceanogr 33:114–120

    Article  CAS  Google Scholar 

  • Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69:535–546

    Google Scholar 

  • Diaz MC, Ward BB (1997) Sponge-mediated nitrification in tropical benthic communities. Mar Ecol Prog Ser 156:97–107

    Article  CAS  Google Scholar 

  • Duran S, Rützler K (2006) Ecological speciation in a Caribbean marine sponge. Mol Phylogenet Evol 40:292–297

    Article  CAS  PubMed  Google Scholar 

  • Duran S, Giribet G, Turon X (2004a) Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Mol Ecol 13:109–122

    Article  CAS  PubMed  Google Scholar 

  • Duran S, Pascual M, Turon X (2004b) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35

    Article  CAS  Google Scholar 

  • Duran S, Pascual M, Estoup A, Turon X (2004c) Strong population structure in the sponge Crambe crambe as revealed by microsatellite markers. Mol Ecol 13:511–522

    Article  CAS  PubMed  Google Scholar 

  • Erpenbeck D, Hooper JNA, Wörheide G (2006) CO1 phylogenies in the diploblasts and the ‘Barcoding of Life’- are we sequencing a suboptimal partition? Mol Ecol Res 6:550–553

    CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quatro JM (1992) Analysis of molecular variance inferred from metric distances along DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Felder DL, Staton JL (1994) Genetic differentiation in trans-Floridian species complexes of Sesarma and Uca (Decapoda: Brachyura). J Crustac Biol 14:191–209

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit one from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626

    Article  CAS  PubMed  Google Scholar 

  • Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167–1175

    Article  Google Scholar 

  • Jaap WC, Hallock P (1990) Coral reefs. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida. University of Central Florida Press, Gainseville, FL, USA, pp 574–616

    Google Scholar 

  • Kirk NL, Andras JP, Harvell CD, Santos SR, Coffroth MA (2009) Population structure of Symbiodinium sp. associated with the common sea fan, Gorgonia ventalina, in the Florida Keys across distance, depth, and time. Mar Biol 156:1609–1623

    Article  Google Scholar 

  • Kyle CJ, Boulding EG (2000) Comparative population genetic structure of marine gastropods (Littorina spp.) with and without pelagic larval dispersal. Mar Biol 137:835–845

    Article  CAS  Google Scholar 

  • Lacson JM, Morizot DC (1991) Temporal genetic variation in subpopulations of bicolor damselfish (Stegastes partitus) inhabiting coral reefs in the Florida Keys. Mar Biol 110:353–357

    Article  Google Scholar 

  • Lacson JM, Riccardi VM, Calhoun SW, Morizot DC (1989) Genetic differentiation of bicolor damselfish (Eupomacentrus partitus) populations in the Florida Keys. Mar Biol 103:445–451

    Article  Google Scholar 

  • Lee TN, Foighil Ó (2004) Hidden biodiversity: mitochondrial and nuclear gene trees reveal four cryptic species within the scorched mussel, Brachiodontes exustus, species complex. Mol Ecol 13:3527–3542

    Article  CAS  PubMed  Google Scholar 

  • Lee TN, Williams E (1999) Mean distribution and seasonal variability of coastal currents and temperature in the Florida Keys with implications for larval recruitment. Bull Mar Sci 64:35–56

    Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–298

    Article  CAS  Google Scholar 

  • Lindquist N, Hay ME (1996) Palatability and chemical defense of marine invertebrate larvae. Ecol Monogr 66:431–450

    Article  Google Scholar 

  • Lindquist N, Bolser R, Laing K (1997) Timing of larval release by two Caribbean demosponges. Mar Ecol Prog Ser 155:309–313

    Article  Google Scholar 

  • Lopez JV, McCarthy PJ, Janda KE, Willoughby R, Pomponi SA (1999) Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with the sponge genus Discodermia (Porifera: Demospongiae). Mem Qld Mus 44:329–341

    Google Scholar 

  • López-Legentil S, Pawlik JR (2009) Genetic structure of the Caribbean giant barrel sponge Xestospongia muta using the I3–M11 partition of COI. Coral Reefs 28:157–165

    Article  Google Scholar 

  • Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84:175–194

    Article  Google Scholar 

  • Maldonado M, Uriz MJ (1999) Sexual propagation by sponge fragments. Nature 398:476

    Article  CAS  Google Scholar 

  • Matthews LM (2006) Cryptic biodiversity and phylogeographical patterns in a snapping shrimp species complex. Mol Ecol 15:4049–4063

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Embnew News 4:14

    Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Pandolfi JM, Jackson JBC, Baron N, Bradbury RH, Guzman HM, Hughes TP, Kappel CV, Micheli F, Ogden JC, Possingham HP, Sala E (2005) Are U.S. coral reefs on the slippery slope to slime? Science 307:1725–1726

    Article  CAS  PubMed  Google Scholar 

  • Park MH, Sim CJ, Baek J, Min GS (2007) Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae Sponges. Mol Cells 23:220–227

    CAS  PubMed  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106:5693–5697

    Article  CAS  PubMed  Google Scholar 

  • Reeb CA, Avise JC (1990) A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics 124:397–406

    CAS  PubMed  Google Scholar 

  • Ribeiro SM, Omena EP, Muricy G (2003) Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro State, SE Brazil. Estuar Coast Shelf Sci 57:951–959

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richards VP, Thomas JD, Stanhope MJ, Shivji MS (2007) Genetic connectivity in Florida reef system: comparative phylogeography of commensal invertebrates with contrasting reproductive strategies. Mol Ecol 16:139–157

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP: DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Rützler K (1978) Sponges in coral reefs. In: Stoddart DR, Johanes RE (eds) Coral reefs: research methods, monographs on oceanographic methodology. UNESCO, Paris, France, pp 209–313

  • Saunders NC, Kessler LG, Avice JC (1986) Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab, Limulus polyphemus. Genetics 112:613–627

    PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN (version 2.000): A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Sponer R, Roy MS (2002) Phylogenetic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution 56:1954–1967

    PubMed  Google Scholar 

  • Taylor MS, Hellberg ME (2006) Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol Ecol 15:695–707

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Molec Biol Rev 71:295–347

    Article  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  • Teske PR, Hamilton H, Palsbøl PJ, Choo PJ, Gabr H, Lourie SA, Santos M, Sreepada A, Cherry MI, Matthee CA (2005) Molecular evidence for long distance colonization in an Indo-Pacific seashore lineage. Mar Ecol Prog Ser 286:249–260

    Article  CAS  Google Scholar 

  • Underwood JN, Smith LD, Van Oppen MJH, Gilmour JP (2007) Multiple scales of genetic connectivity in a brooding coral on isolated reefs following catastrophic bleaching. Mol Ecol 16:771–784

    Article  CAS  PubMed  Google Scholar 

  • Whalen S, Johnson MS, Harvey E, Battershill C (2005) Mode of reproduction, recruitment, and genetic subdivision in the brooding sponge Haliclona sp. Mar Biol 146:425–433

    Article  Google Scholar 

  • Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demospongia Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912

    Article  CAS  Google Scholar 

  • Wörheide G, Hooper JNA, Degnan BM (2002) Phylogeography of western Pacific Leucettachagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol Ecol 11:1753–1768

    Article  PubMed  Google Scholar 

  • Wörheide G, Sole-Cava AM, Hooper JN (2005) Biodiversity, molecular ecology and phylogeography of marine sponges: patterns, implications and outlooks. Integr Comp Biol 45:377–385

    Article  Google Scholar 

  • Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  Google Scholar 

  • Wulff JL (1985) Dispersal and survival of fragments of coral reef sponges. Proc 5th Int Coral Reef Congr 5:119–124

    Google Scholar 

  • Wulff JL (1991) Asexual fragmentation, genotype success, and population dynamics of erect branching sponges. J Exp Mar Biol Ecol 149:227–247

    Article  Google Scholar 

  • Wulff JL (1995) Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14:55–61

    Article  Google Scholar 

  • Wulff JL (2006) Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biol Conserv 127:167–176

    Article  Google Scholar 

  • Yeung C, Lee TN (2002) Larval transport and retention of the spiny lobster, Panulirus argus, in the coastal zone of the Florida Keys, USA. Fish Oceanogr 11:286–309

    Article  Google Scholar 

  • Young AM, Torres C, Mack JE, Cunningham CEW (2002) Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Mar Biol 140:1059–1066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the NOAA Center for Sponsored Coastal Ocean Science award #NA04NOS4260065 to the National Coral Reef Institute. We thank E. Bartels, D. Gilliam, C. Testerman, and T. Testerman for assistance with sample collection, and J. Delaney for assistance with obtaining sampling permits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shivji.

Additional information

Communicated by Biology Editor Dr. Ruth Gates

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeBiasse, M.B., Richards, V.P. & Shivji, M.S. Genetic assessment of connectivity in the common reef sponge, Callyspongia vaginalis (Demospongiae: Haplosclerida) reveals high population structure along the Florida reef tract. Coral Reefs 29, 47–55 (2010). https://doi.org/10.1007/s00338-009-0554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-009-0554-0

Keywords

Navigation