Skip to main content
Log in

Exploring evidence of positive selection signatures in cattle breeds selected for different traits

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N’Dama cattle breeds using Tajima’s D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N’Dama (West Africa—Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N’Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N’Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N’Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aftab S, Semenec L, Chu JS-C, Chen N (2008) Identification and characterization of novel human tissue-specific RFX transcription factors. BMC Evol Biol 8(1):226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhtar N, Streuli CH (2006) Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. J Cell Biol 173(5):781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MA, Adem A, Chandranath IS, Benedict S, Pathan JY, Nagelkerke N et al (2012) Responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system. PLoS ONE 7(5):e37299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Reference Source

  • Bahbahani H, Clifford H, Wragg D, Mbole-Kariuki MN, Van Tassell C, Sonstegard T et al (2015) Signatures of positive selection in East African Shorthorn Zebu: a genome-wide single nucleotide polymorphism analysis. Sci Rep. doi:10.1038/srep11729

    PubMed  PubMed Central  Google Scholar 

  • Baumgartner M, Lemoine C, Al Seesi S, Karunakaran DKP, Sturrock N, Banday AR et al (2015) Minor splicing snRNAs are enriched in the developing mouse CNS and are crucial for survival of differentiating retinal neurons. Dev Neurobiol 75(9):895–907

    Article  CAS  PubMed  Google Scholar 

  • Berthier D, Peylhard M, Dayo G-K, Flori L, Sylla S, Bolly S et al (2015) A comparison of phenotypic traits related to trypanotolerance in five West African cattle breeds highlights the value of shorthorn taurine breeds. PLoS One 10(5):e0126498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK et al (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14(6):650–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81(5):1084–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchinato A, Ribeca C, Chessa S, Cipolat-Gotet C, Maretto F, Casellas J et al (2014) Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Animal 8(07):1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Patterson N, Reich D (2010) Population differentiation as a test for selective sweeps. Genome Res 20(3):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SR, Yang LQ, Chong YT, Jie YS, Wu YK, Yang J et al (2015) Novel gain of function mutation in the SLC40A1 gene associated with hereditary haemochromatosis type 4. Intern Med J 45(6):672–676

    Article  CAS  PubMed  Google Scholar 

  • Christians JK, De Zwaan DR, Fung SHY (2013) Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice. PLoS ONE 8(2):e56260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva AS, Hoehne L, Tonin AA, Zanette RA, Wolkmer P, Costa MM et al (2009) Trypanosoma evansi: Levels of copper, iron and zinc in the bloodstream of infected cats. Exp Parasitol 123(1):35–38

    Article  PubMed  CAS  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker JE, McKay SD, Rolf MM, Kim J, Alcalá AM, Sonstegard TS et al (2014) Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet 10(3):e1004254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dias M, Souza F, Takada L, Feitosa F, Costa R, Diaz I et al (2015) Study of lipid metabolism-related genes as candidate genes of sexual precocity in Nellore cattle. Gen Mol Res 14(1):234–243

    Article  CAS  Google Scholar 

  • Ding L, Zhao Y, Warren CL, Sullivan R, Eliceiri KW, Shull JD (2013) Association of cellular and molecular responses in the rat mammary gland to 17-estradiol with susceptibility to mammary cancer. BMC Cancer 13(1):1

    Article  CAS  Google Scholar 

  • Druso JE, Endo M, Lin M-cJ, Peng X, Antonyak MA, Meller S et al (2016) An essential role for Cdc42 in the functioning of the adult mammary gland. J Biol Chem 291(17):8886–8895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2(12):919–929

    Article  CAS  PubMed  Google Scholar 

  • Esteve-Codina A, Paudel Y, Ferretti L, Raineri E, Megens H-J, Silió L et al (2013) Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs. BMC Genom 14(1):1

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fernández ME, Goszczynski DE, Prando AJ, Peral-García P, Baldo A, Giovambattista G et al (2014) Assessing the association of single nucleotide polymorphisms in thyroglobulin gene with age of puberty in bulls. J Anim Sci Technol 56(1):1

    Article  Google Scholar 

  • Gómez J, Reguero JR, Coto E (2016) The ups and downs of genetic diagnosis of hypertrophic cardiomyopathy. Rev Esp Cardiol 69(1):61–68

    Article  PubMed  Google Scholar 

  • Gouveia JJdS, Silva MVGBD, Paiva SR, Oliveira SMPD (2014) Identification of selection signatures in livestock species. Genet Mol Biol 37(2):330–342

    Article  Google Scholar 

  • Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88(2):173–189

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Fang Q, Ma C, Zhou B, Wan Y, Jiang R (2016) Whole-genome resequencing of Xishuangbanna fighting chicken to identify signatures of selection. Genet Sel Evol 48(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen P (2004) Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci 82:349–360

    Article  PubMed  Google Scholar 

  • Hansen L, Cole J, Marx G, Seykora A (1999) Productive life and reasons for disposal of Holstein cows selected for large versus small body size. J Dairy Sci 82(4):795–801

    Article  CAS  PubMed  Google Scholar 

  • Häussler S (2015) Relevance of bovine adiponectin in the mammary gland of dairy cows. Vet J 204(2):132–133

    Article  PubMed  CAS  Google Scholar 

  • Höglund JK, Guldbrandtsen B, Lund MS, Sahana G (2015) Identification of genomic regions associated with female fertility in Danish Jersey using whole genome sequence data. BMC Genet 16(1):1

    Google Scholar 

  • Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ et al (2013) New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Kaipia A, McGee E, Lomeli M, Hsueh AJ (1997) Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci USA 94(23):12401–12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucl Acids Res 37(1):1–13

    Article  CAS  Google Scholar 

  • Jackson JE (1991) A User’s Guide to Principal Components. Wiley, New York

    Book  Google Scholar 

  • Jennen D, Vereijken A, Bovenhuis H, Crooijmans R, Veenendaal A, Van der Poel J et al (2004) Detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci 83(3):295–301

    Article  CAS  PubMed  Google Scholar 

  • Kahoun J (1971) Heat tolerance in West African cattle. Ghana J Sci 11(1):19–26

    Google Scholar 

  • Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D et al (2011) Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 43(5):405–413

    Article  CAS  PubMed  Google Scholar 

  • Kasvandik S, Sillaste G, Velthut-Meikas A, Mikelsaar AV, Hallap T, Padrik P et al (2015) Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment. Proteomics 15(11):1906–1920

    Article  CAS  PubMed  Google Scholar 

  • Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F et al (2013) Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet 22(25):5288–5294

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Cho S, Caetano-Anolles K, Kim H, Ryu Y-C (2015) Genome-wide detection and characterization of positive selection in Korean Native Black Pig from Jeju Island. BMC Genet 16(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Hanotte O, Mwai OA, Dessie T, Bashir S, Diallo B et al (2017) The genome landscape of indigenous African cattle. Genome Biol 18(34)

  • Korneliussen TS, Moltke I, Albrechtsen A, Nielsen R (2013) Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinform 14(1):289

    Article  CAS  Google Scholar 

  • Kucerova J, Matejicek A, Jandurová O, Sorensen P, Nemcova E, Stipkova M et al (2006) Milk protein genes CSN1S1, CSN2, CSN3, LGB and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech J Anim Sci 51(6):241

    CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leak SG (1999) Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. CABI publishing, Wallingford

    Google Scholar 

  • Lecchi C, Giudice C, Uggè M, Scarafoni A, Baldi A, Sartorelli P (2015) Characterisation of adiponectin and its receptors in the bovine mammary gland and in milk. Vet J 203(3):296–301

    Article  CAS  PubMed  Google Scholar 

  • Lee K-T, Chung W-H, Lee S-Y, Choi J-W, Kim J, Lim D et al (2013) Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genom 14(1):1

    Article  CAS  Google Scholar 

  • Lee H-J, Kim J, Lee T, Son JK, Yoon H-B, Baek K-S et al (2014a) Deciphering the genetic blueprint behind Holstein milk proteins and production. Genome Biol Evol 6(6):1366–1374 a)

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee S-H, Park B-H, Sharma A, Dang C-G, Lee S-S, Choi T-J et al (2014b) Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J Anim Sci Technol 56(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y-D, Ji Y-T, Zhou X-H, Li H-l, Zhang H-t, Xing Q et al (2015) TNNT2 gene polymorphisms are associated with susceptibility to idiopathic dilated cardiomyopathy in Kazak and Han Chinese. Med Sci Monit 21:3343

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Chen J, Wang Z, Pan Y, Wang Q, Xu N et al (2016) Detection of selection signatures of population-specific genomic regions selected during domestication process in Jinhua pigs. Anim Genet 47(6):672–681

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Song W, Tromp G, Kolattukudy PE, Fu M (2008) Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS ONE 3(8):e2880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Littlejohn M, Grala T, Sanders K, Walker C, Waghorn G, Macdonald K et al (2012) Genetic variation in PLAG1 associates with early life body weight and peripubertal weight and growth in Bos taurus. Anim Genet 43(5):591–594

    Article  CAS  PubMed  Google Scholar 

  • Mai M, Sahana G, Christiansen F, Guldbrandtsen B (2010) A genome-wide association study for milk production traits in Danish Jersey cattle using a 50 K single nucleotide polymorphism chip. J Anim Sci 88(11):3522–3528

    Article  CAS  PubMed  Google Scholar 

  • Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegårdh J et al (2008) Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet 17(2):256–265

    Article  CAS  PubMed  Google Scholar 

  • Mattioli RC, Pandey VS, Murray M, Fitzpatrick JL (2000) Immunogenetic influences on tick resistance in African cattle with particular reference to trypanotolerant N’Dama (Bos taurus) and trypanosusceptible Gobra zebu (Bos indicus) cattle. Acta Trop 75(3):263–277

    Article  CAS  PubMed  Google Scholar 

  • McAninch EA, Bianco AC (2014) Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci 1311(1):77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger J, Schrimpf R, Philipp U, Distl O (2013) Expression levels of LCORL are associated with body size in horses. PLoS ONE 8(2):e56497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Sánchez N, Rueda J, Carabaño MJ, Reverter A, McWilliam S, González C et al (2010) Skeletal muscle specific genes networks in cattle. Funct Integr Genom 10(4):609–618

    Article  CAS  Google Scholar 

  • Mozdziak P (2006) Linking embryonic myogenesis to meat quantity and quality. Pol J Food Nutr Sci 15(2):117

    Google Scholar 

  • Nart P, Williams A, Thompson H, Innocent G (2004) Morphometry of bovine dilated cardiomyopathy. J Comp Pathol 130(4):235–245

    Article  CAS  PubMed  Google Scholar 

  • O’Dell SD, Day IN (1998) Molecules in focus Insulin-like growth factor II (IGF-II). Int J Biochem Cell Biol 30(7):767–771

    Article  PubMed  Google Scholar 

  • Ogorevc J, Kunej T, Razpet A, Dovc P (2009) Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet 40(6):832–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunsanmi A, Taiwo V, Onawumi B, Mbagwu H, Okoronkwo C (2000) Correlation of physiological plasma lipid levels with resistance of cattle to trypanosomosis. Veterinarski arhiv 70(5):251–257

    CAS  Google Scholar 

  • Owczarek-Lipska M, Plattet P, Zipperle L, Drögemüller C, Posthaus H, Dolf G et al (2011) A nonsense mutation in the optic atrophy 3 gene (OPA3) causes dilated cardiomyopathy in Red Holstein cattle. Genomics 97(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Piirsoo M, Meijer D, Timmusk T (2009) Expression analysis of the CLCA gene family in mouse and human with emphasis on the nervous system. BMC Dev Biol 9(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porto-Neto L, Lee S-H, Sonstegard T, Van Tassell C, Lee H, Gibson J et al (2014) Genome-wide detection of signatures of selection in Korean Hanwoo cattle. Anim Genet 45(2):180–190

    Article  CAS  PubMed  Google Scholar 

  • Pryce JE, Hayes BJ, Bolormaa S, Goddard ME (2011) Polymorphic regions affecting human height also control stature in cattle. Genetics 187(3):981–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qanbari S, Simianer H (2014) Mapping signatures of positive selection in the genome of livestock. Livest Sci 166:133–143

    Article  Google Scholar 

  • Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castelló A, Ballester M et al (2012) Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genom 13(1):1

    Article  CAS  Google Scholar 

  • Ramayo-Caldas Y, Ballester M, Fortes MR, Esteve-Codina A, Castelló A, Noguera JL et al (2014) From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine. BMC Genom 15(1):1

    Article  CAS  Google Scholar 

  • Randhawa IA, Khatkar MS, Thomson PC, Raadsma HW (2016) A meta-assembly of selection signatures in cattle. PLoS ONE 11(4):e0153013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rege J, Tawah C (1999) The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Anim Genet Resour Inf 26:1–25

    Article  Google Scholar 

  • Rezaei R, Wu Z, Hou Y, Bazer FW, Wu G (2016) Amino acids and mammary gland development: nutritional implications for milk production and neonatal growth. J Anim Sci Biotechnol 7(1):1

    Article  CAS  Google Scholar 

  • Rothammer S, Seichter D, Förster M, Medugorac I (2013) A genome-wide scan for signatures of differential artificial selection in ten cattle breeds. BMC Genom 14(1):1

    Article  CAS  Google Scholar 

  • Rubin C-J, Megens H-J, Barrio AM, Maqbool K, Sayyab S, Schwochow D et al (2012) Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci USA 109(48):19529–19536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santana M, Ventura R, Utsunomiya Y, Neves H, Alexandre P, Oliveira Junior G et al (2015) A genomewide association mapping study using ultrasound-scanned information identifies potential genomic regions and candidate genes affecting carcass traits in Nellore cattle. J Anim Breed Genet 132(6):420–427

    Article  CAS  PubMed  Google Scholar 

  • Sibut V, Hennequet-Antier C, Le Bihan-Duval E, Marthey S, Duclos MJ, Berri C (2011) Identification of differentially expressed genes in chickens differing in muscle glycogen content and meat quality. BMC Genom 12(1):1

    Article  CAS  Google Scholar 

  • Smedley R, Mullaney T, Rumbeiha W (2009) Copper-associated hepatitis in Labrador Retrievers. Vet Pathol 46(3):484–490

    Article  CAS  PubMed  Google Scholar 

  • Sommerhalter M, Zhang Y, Rosenzweig AC (2007) Solution structure of the COMMD1 N-terminal domain. J Mol Biol 365(3):715–721

    Article  CAS  PubMed  Google Scholar 

  • Stella A, Ajmone-Marsan P, Lazzari B, Boettcher P (2010) Identification of selection signatures in cattle breeds selected for dairy production. Genetics 185(4):1451–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez-Vega A, Gutiérrez-Gil B, Klopp C, Robert-Granie C, Tosser-Klopp G, Arranz JJ (2015) Characterization and comparative analysis of the milk transcriptome in two dairy sheep breeds using RNA sequencing. Sci Rep 5:18399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M et al (2016) On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med 22(8):945–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traoré-Leroux T, Fumoux F, Roelants G (1985) Correlation of serum zinc levels with resistance of cattle to trypanosomiasis. Acta Trop 42(1):39–44

    PubMed  Google Scholar 

  • Turner LM, Chuong EB, Hoekstra HE (2008) Comparative analysis of testis protein evolution in rodents. Genetics 179(4):2075–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utsunomiya YT, Do Carmo AS, Carvalheiro R, Neves HH, Matos MC, Zavarez LB et al (2013) Genome-wide association study for birth weight in Nellore cattle points to previously described orthologous genes affecting human and bovine height. BMC Genet 14(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venturini G, Cardoso D, Baldi F, Freitas A, Aspilcueta-Borquis R, Santos D et al (2014) Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genet Mol Res 13(4):10256–10268

    Article  CAS  PubMed  Google Scholar 

  • Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76(2):115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47:97–120

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen J, Liu H, Xu Y, Wang X, Xue C et al (2008) The pig p160 co-activator family: full length cDNA cloning, expression and effects on intramuscular fat content in Longissimus Dorsi muscle. Domest Anim Endocrinol 35(2):208–216

    Article  CAS  PubMed  Google Scholar 

  • Wickramasinghe S, Rincon G, Medrano J (2011) Variants in the pregnancy-associated plasma protein-A2 gene on Bos taurus autosome 16 are associated with daughter calving ease and productive life in Holstein cattle. J Dairy Sci 94(3):1552–1558

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Bickhart DM, Cole JB, Schroeder SG, Song J, Van Tassell CP et al (2015) Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol Biol Evol 32(3):711–725

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H (2010) Three-dimensional structure of membrane protein stomatin and function of stomatin-specific protease. Yakugaku zasshi 130(10):1289–1293

    Article  CAS  PubMed  Google Scholar 

  • Zappaterra M, Braglia S, Bigi M, Zambonelli P, Davoli R (2015) Comparison of expression levels of fourteen genes involved in the lipid and energy metabolism in two pig breeds. Livest Sci 181:156–162

    Article  Google Scholar 

  • Zhang R (2016) Identification of candidate genes for porcine meat quality and investigation of effects of sulforaphane on porcine satellite cell. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn

    Google Scholar 

  • Zhao F, McParland S, Kearney F, Du L, Berry DP (2015) Detection of selection signatures in dairy and beef cattle using high-density genomic information. Genet Sel Evol 47(1):1

    Article  CAS  Google Scholar 

  • Zheng A, Chang W, Liu G, Yue Y, Li J, Zhang S et al (2016) Molecular differences in hepatic metabolism between AA broiler and big bone chickens: a proteomic study. PLoS ONE 11(10):e0164702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X (2010) Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J Androl 31(3):235–243

    Article  PubMed  Google Scholar 

  • Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D et al (2009) A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 10(4):R42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Project No. PJ01134905), Rural Development Administration (RDA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

MT conceived and designed the study, analyzed the data, and wrote the paper; WL, SJ, and JY helped analyzing the data; OH, TD, SK, OAM, SC, SJO, HKL, and HK designed the project; HK organized and supervised the project.

Corresponding author

Correspondence to Heebal Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2017_9715_MOESM1_ESM.xls

Additional file 1: Summary of positively selected genes: Table S1. Holstein Tajima’s D detected genes; Table S2. Holstein XP-EHH detected genes; Table S3. Holstein XP-CLR detected genes; Table S4. Common genes between statistical methods used for Holstein breed; Table S5. Hanwoo Tajima’s D detected genes; Table S6. Hanwoo XP-EHH detected genes, Table S7. Hanwoo XP-CLR detected genes; Table S8. Common genes between statistical methods used for Hanwoo breed; Table S9. N’Dama Tajima’s D detected genes; Table S10. N’Dama XP-EHH detected genes; Table S11. N’Dama XP-CLR detected genes. Table S12. Common genes between statistical methods used for N’Dama breed; Table S13. Common genes between Holstein, Hanwoo, and N’Dama breeds. (XLS 338 KB)

335_2017_9715_MOESM2_ESM.xlsx

Additional file 2: Overlapping genes with previous studies. Table S14. Genes detected from Holstein cattle in this study that overlapped with previous studies; Table S15. Genes detected from Hanwoo cattle in this study that overlapped with previous studies; Table S16. Genes detected from N’Dama cattle in this study that overlapped with previous studies (XLSX 52 KB)

335_2017_9715_MOESM3_ESM.xls

Additional file 3: Summary of QTL overlapped genes: Table S17. XP-EHH detected genes overlapped with QTL regions in Holstein cattle; Table S18. XP-CLR detected genes overlapped with QTL regions in Holstein cattle; Table S19. Tajima’s D detected genes overlapped with QTL regions in Holstein cattle; Table S20. XP-EHH detected genes overlapped with QTL regions in Hanwoo cattle; Table S21. XP-CLR detected genes overlapped with QTL regions in Hanwoo cattle; Table S22. Tajima’s D detected genes overlapped with QTL regions in Hanwoo cattle; Table S23. XP-EHH detected genes overlapped with QTL regions in N’Dama cattle; Table S24. XP-CLR detected genes overlapped with QTL regions in N’Dama cattle; Table S25. Tajima’s D detected genes overlapped with QTL regions in N’Dama cattle. (XLS 299 KB)

Additional file 4: SNP association: Table S26. Association of SNPs. (XLS 78 KB)

335_2017_9715_MOESM5_ESM.pptx

Additional file 5: Figure S1. Manhattan plot of the –log10 transformed Tajima’s D p values of a) Holstein, b) Hanwoo and 3) N’Dama cattle breeds. Figure S2. The structure of non-synonymous variants on a) ADIPOQ - 1:81006985, b) CPQ - rs109886870, c) PAPPA2 - rs210049354, and d) ATP10B - rs209490227 gene regions. Exons are indicated by vertical brown bars. Alleles are indicated by colored bars, the major allele (green bars) and the minor allele (orange bars). Breed specific significant non-synonymous SNPs are highlighted in yellow, the amino acid changes are indicated under the allele. The frequency of each haplotype is indicated on the right side of the figure. (PPTX 1051 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taye, M., Lee, W., Jeon, S. et al. Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome 28, 528–541 (2017). https://doi.org/10.1007/s00335-017-9715-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-017-9715-6

Keywords

Navigation