Skip to main content
Log in

Genetic determinants of atherosclerosis, obesity, and energy balance in consomic mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Metabolic diseases such as obesity and atherosclerosis result from complex interactions between environmental factors and genetic variants. A panel of chromosome substitution strains (CSSs) was developed to characterize genetic and dietary factors contributing to metabolic diseases and other biological traits and biomedical conditions. Our goal here was to identify quantitative trait loci (QTLs) contributing to obesity, energy expenditure, and atherosclerosis. Parental strains C57BL/6 and A/J together with a panel of 21 CSSs derived from these progenitors were subjected to chronic feeding of rodent chow and atherosclerotic (females) or diabetogenic (males) test diets, and evaluated for a variety of metabolic phenotypes including several traits unique to this report, namely fat pad weights, energy balance, and atherosclerosis. A total of 297 QTLs across 35 traits were discovered, two of which provided significant protection from atherosclerosis, and several dozen QTLs modulated body weight, body composition, and circulating lipid levels in females and males. While several QTLs confirmed previous reports, most QTLs were novel. Finally, we applied the CSS quantitative genetic approach to energy balance, and identified three novel QTLs controlling energy expenditure and one QTL modulating food intake. Overall, we identified many new QTLs and phenotyped several novel traits in this mouse model of diet-induced metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackert-Bicknell C, Paigen B, Korstanje R (2013) Recalculation of 23 mouse HDL QTL datasets improves accuracy and allows for better candidate gene analysis. J Lipid Res 54:984–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ajioka RS, LeBoeuf RC, Gillespie RR, Amon LM, Kushner JP (2007) Mapping genes responsible for strain-specific iron phenotypes in murine chromosome substitution strains. Blood Cells Mol Dis 39:199–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett BJ, Orozco L, Kostem E, Erbilgin A, Dallinga M, Neuhaus I, Guan B, Wang X, Eskin E, Lusis AJ (2012) High-resolution association mapping of atherosclerosis loci in mice. Arterioscler Thromb Vasc Biol 32:1790–1798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchner DA, Burrage LC, Hill AE, Yazbek SN, O’Brien WE, Croniger CM, Nadeau JH (2008) Resistance to diet-induced obesity in mice with a single substituted chromosome. Physiol Genomics 35:116–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burrage LC, Baskin-Hill AE, Sinasac DS, Singer JB, Croniger CM, Kirby A, Kulbokas EJ, Daly MJ, Lander ES, Broman KW, Nadeau JH (2010) Genetic resistance to diet-induced obesity in chromosome substitution strains of mice. Mamm Genome 21:115–129

    Article  CAS  PubMed  Google Scholar 

  • Castellani LW, Weinreb A, Bodnar J, Goto AM, Doolittle M, Mehrabian M, Demant P, Lusis AJ (1998) Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nat Genet 18:374–377

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Rollins J, Paigen B, Wang X (2007) Genetic and genomic insights into the molecular basis of atherosclerosis. Cell Metab 6:164–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dallinga-Thie GM, Zonneveld-de Boer AJ, van Vark-van der Zee LC, van Haperen R, van Gent T, Jansen H, De Crom R, van Tol A (2007) Appraisal of hepatic lipase and lipoprotein lipase activities in mice. J Lipid Res 48:2788–2791

    Article  CAS  PubMed  Google Scholar 

  • Dansky HM, Shu P, Donavan M, Montagno J, Nagle DL, Smutko JS, Roy N, Whiteing S, Barrios J, McBride TJ, Smith JD, Duyk G, Breslow JL, Moore KJ (2002) A phenotype-sensitizing Apoe-deficient genetic background reveals novel atherosclerosis predisposition loci in the mouse. Genetics 160:1599–1608

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeSantis DA, Lee P, Doerner SK, Ko CW, Kawasoe JH, Hill-Baskin AE, Ernest SR, Bhargava P, Hur KY, Cresci GA, Pritchard MT, Lee CH, Nagy LE, Nadeau JH, Croniger CM (2013) Genetic resistance to liver fibrosis on A/J mouse chromosome 17. Alcohol Clin Exp Res 37:1668–1679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drong AW, Lindgren CM, McCarthy MI (2012) The genetic and epigenetic basis of type 2 diabetes and obesity. Clin Pharmacol Ther 92:707–715

    Article  CAS  PubMed  Google Scholar 

  • Elia M, Livesey G (1992) Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods. World Rev Nutr Diet 70:68–131

    CAS  PubMed  Google Scholar 

  • Gelling RW, Yan W, Al-Noori S, Pardini A, Morton GJ, Ogimoto K, Schwartz MW, Dempsey PJ (2008) Deficiency of TNFalpha converting enzyme (TACE/ADAM17) causes a lean, hypermetabolic phenotype in mice. Endocrinology 149:6053–6064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregorova S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL, Donahue LR, Paigen B, Forejt J (2008) Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res 18:509–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guyenet SJ, Schwartz MW (2012) Clinical review: regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 97:745–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hewing B, Fisher EA (2012) Preclinical mouse models and methods for the discovery of the causes and treatments of atherosclerosis. Expert Opin Drug Discov 7:207–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoover-Plow J, Shchurin A, Hart E, Sha J, Hill AE, Singer JB, Nadeau JH (2006) Genetic background determines response to hemostasis and thrombosis. BMC Blood Disord 6:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsu J, Smith JD (2013) Genetic-genomic replication to identify candidate mouse atherosclerosis modifier genes. J Am Heart Assoc 2:e005421

    PubMed Central  PubMed  Google Scholar 

  • Kaiyala KJ, Morton GJ, Leroux BG, Ogimoto K, Wisse B, Schwartz MW (2010) Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59:1657–1666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krewson TD, Supelak PJ, Hill AE, Singer JB, Lander ES, Nadeau JH, Palmert MR (2004) Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains. Endocrinology 145:4447–4451

    Article  CAS  PubMed  Google Scholar 

  • Kuhel DG, Zhu B, Witte DP, Hui DY (2002) Distinction in genetic determinants for injury-induced neointimal hyperplasia and diet-induced atherosclerosis in inbred mice. Arterioscler Thromb Vasc Biol 22:955–960

    Article  CAS  PubMed  Google Scholar 

  • Kunjathoor VV, Wilson DL, LeBoeuf RC (1996) Increased atherosclerosis in streptozotocin-induced diabetic mice. J Clin Investig 97:1767–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Larson-Hall J (2010) A guide to doing statistics in second language research using SPSS. Routledge, New York

    Google Scholar 

  • Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lusis AJ, Fogelman AM, Fonarow GC (2004) Genetic basis of atherosclerosis: part II: clinical implications. Circulation 110:2066–2071

    Article  PubMed  Google Scholar 

  • Mathes WF, Aylor DL, Miller DR, Churchill GA, Chesler EJ, de Villena FP, Threadgill DW, Pomp D (2011) Architecture of energy balance traits in emerging lines of the collaborative cross. Am J Physiol Endocrinol Metab 300:E1124–E1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McLean JA, Tobin G (1987) Animal and human calorimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • McMillen TS, Heinecke JW, LeBoeuf RC (2005) Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 111:2798–2804

    Article  CAS  PubMed  Google Scholar 

  • Millward CA, Burrage LC, Shao H, Sinasac DS, Kawasoe JH, Hill-Baskin AE, Ernest SR, Gornicka A, Hsieh CW, Pisano S, Nadeau JH, Croniger CM (2009) Genetic factors for resistance to diet-induced obesity and associated metabolic traits on mouse chromosome 17. Mamm Genome 20:71–82

    Article  CAS  PubMed  Google Scholar 

  • Movat HZ (1955) Demonstration of all connective tissue elements in a single section; pentachrome stains. AMA Arch Pathol 60:289–295

    CAS  PubMed  Google Scholar 

  • Murea M, Ma L, Freedman BI (2012) Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud 9:6–22

    Article  PubMed Central  PubMed  Google Scholar 

  • Nadeau JH, Topol EJ (2006) The genetics of health. Nat Genet 38:1095–1098

    Article  CAS  PubMed  Google Scholar 

  • Nadeau JH, Forejt J, Takada T, Shiroishi T (2012) Chromosome substitution strains: gene discovery, functional analysis, and systems studies. Mamm Genome 23:693–705

    Article  PubMed Central  PubMed  Google Scholar 

  • Nishina PM, Verstuyft J, Paigen B (1990) Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res 31:859–869

    CAS  PubMed  Google Scholar 

  • Nishina PM, Wang J, Toyofuku W, Kuypers FA, Ishida BY, Paigen B (1993) Atherosclerosis and plasma and liver lipids in nine inbred strains of mice. Lipids 28:599–605

    Article  CAS  PubMed  Google Scholar 

  • Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57:65–73

    Article  CAS  PubMed  Google Scholar 

  • Paigen B, Holmes PA, Mitchell D, Albee D (1987a) Comparison of atherosclerotic lesions and HDL-lipid levels in male, female, and testosterone-treated female mice from strains C57BL/6, BALB/c, and C3H. Atherosclerosis 64:215–221

    Article  CAS  PubMed  Google Scholar 

  • Paigen B, Mitchell D, Reue K, Morrow A, Lusis AJ, LeBoeuf RC (1987b) Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Proc Natl Acad Sci USA 84:3763–3767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pamir N, McMillen TS, Kaiyala KJ, Schwartz MW, LeBoeuf RC (2009) Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology 150:4124–4134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prows DR, Hafertepen AP, Winterberg AV, Gibbons WJ Jr, Liu C, Nick TG (2007) Genetic analysis of hyperoxic acute lung injury survival in reciprocal intercross mice. Physiol Genomics 30:271–281

    Article  CAS  PubMed  Google Scholar 

  • Rebuffe-Scrive M, Surwit R, Feinglos M, Kuhn C, Rodin J (1993) Regional fat distribution and metabolism in a new mouse model (C57BL/6J) of non-insulin-dependent diabetes mellitus. Metab Clin Exp 42:1405–1409

    Article  CAS  PubMed  Google Scholar 

  • Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K, Schwartz MW (2010) Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59:1817–1824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schreyer SA, Vick C, Lystig TC, Mystkowski P, LeBoeuf RC (2002) LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am J Physiol Endocrinol Metab 282:E207–E214

    CAS  PubMed  Google Scholar 

  • Schwartz MW (2006) Central nervous system regulation of food intake. Obesity 14(Suppl 1):1S–8S

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Burrage LC, Sinasac DS, Hill AE, Ernest SR, O’Brien W, Courtland HW, Jepsen KJ, Kirby A, Kulbokas EJ, Daly MJ, Broman KW, Lander ES, Nadeau JH (2008) Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc Natl Acad Sci USA 105:19910–19914

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, O’Brien WE, Conti DV, Witte JS, Lander ES, Nadeau JH (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    Article  CAS  PubMed  Google Scholar 

  • Smith JD, Bhasin JM, Baglione J, Settle M, Xu Y, Barnard J (2006) Atherosclerosis susceptibility loci identified from a strain intercross of apolipoprotein E-deficient mice via a high-density genome scan. Arterioscler Thromb Vasc Biol 26:597–603

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR (2013) Measuring energy metabolism in the mouse—theoretical, practical, and analytical considerations. Front Physiol 4:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Spiezio SH, Takada T, Shiroishi T, Nadeau JH (2012) Genetic divergence and the genetic architecture of complex traits in chromosome substitution strains of mice. BMC Genet 13:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Stefan M, Nicholls RD (2004) What have rare genetic syndromes taught us about the pathophysiology of the common forms of obesity? Curr DiabRep 4:143–150

    Article  Google Scholar 

  • Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37:1163–1167

    Article  CAS  PubMed  Google Scholar 

  • Surwit RS, Feinglos MN, Rodin J, Sutherland A, Petro AE, Opara EC, Kuhn CM, Rebuffe-Scrive M (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metab Clin Exp 44:645–651

    Article  CAS  PubMed  Google Scholar 

  • Taicher GZ, Tinsley FC, Reiderman A, Heiman ML (2003) Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem 377:990–1002

    Article  CAS  PubMed  Google Scholar 

  • Takada T, Mita A, Maeno A, Sakai T, Shitara H, Kikkawa Y, Moriwaki K, Yonekawa H, Shiroishi T (2008) Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res 18:500–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor BA, Wnek C, Schroeder D, Phillips SJ (2001) Multiple obesity QTLs identified in an intercross between the NZO (New Zealand obese) and the SM (small) mouse strains. Mamm Genome 12:95–103

    Article  CAS  PubMed  Google Scholar 

  • Teupser D, Tan M, Persky AD, Breslow JL (2006) Atherosclerosis quantitative trait loci are sex- and lineage-dependent in an intercross of C57BL/6 and FVB/N low-density lipoprotein receptor−/−mice. Proc Natl Acad Sci USA 103:123–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thaisz J, Tsaih SW, Feng M, Philip VM, Zhang Y, Yanas L, Sheehan S, Xu L, Miller DR, Paigen B, Chesler EJ, Churchill GA, Dipetrillo K (2012) Genetic analysis of albuminuria in collaborative cross and multiple mouse intercross populations. Am J Physiol Renal Physiol 303:F972–F981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tinsley FC, Taicher GZ, Heiman ML (2004) Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes Res 12:150–160

    Article  PubMed  Google Scholar 

  • van Klinken JB, van den Berg SA, van Dijk KW (2013) Practical aspects of estimating energy components in rodents. Front Physiol 4:94

    PubMed Central  PubMed  Google Scholar 

  • Wang X, Gargalovic P, Wong J, Gu JL, Wu X, Qi H, Wen P, Xi L, Tan B, Gogliotti R, Castellani LW, Chatterjee A, Lusis AJ (2004) Hyplip2, a new gene for combined hyperlipidemia and increased atherosclerosis. Arterioscler Thromb Vasc Biol 24:1928–1934

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ria M, Kelmenson PM, Eriksson P, Higgins DC, Samnegard A, Petros C, Rollins J, Bennet AM, Wiman B, de Faire U, Wennberg C, Olsson PG, Ishii N, Sugamura K, Hamsten A, Forsman-Semb K, Lagercrantz J, Paigen B (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yehya N, Schadt EE, Wang H, Drake TA, Lusis AJ (2006) Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2:e15

    Article  PubMed Central  PubMed  Google Scholar 

  • Weiss JN, Karma A, MacLellan WR, Deng M, Rau CD, Rees CM, Wang J, Wisniewski N, Eskin E, Horvath S, Qu Z, Wang Y, Lusis AJ (2012) “Good enough solutions” and the genetics of complex diseases. Circ Res 111:493–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Welsh CE, Miller DR, Manly KF, Wang J, McMillan L, Morahan G, Mott R, Iraqi FA, Threadgill DW, de Villena FP (2012) Status and access to the collaborative cross population. Mamm Genome 23:706–712

    Article  PubMed Central  PubMed  Google Scholar 

  • West DB, Goudey-Lefevre J, York B, Truett GE (1994a) Dietary obesity linked to genetic loci on chromosomes 9 and 15 in a polygenic mouse model. J Clin Investig 94:1410–1416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West DB, Waguespack J, York B, Goudey-Lefevre J, Price RA (1994b) Genetics of dietary obesity in AKR/J × SWR/J mice: segregation of the trait and identification of a linked locus on chromosome 4. Mamm Genome 5:546–552

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Peterson L, Thieringer R, Deignan JL, Wang X, Zhu J, Wang S, Zhong H, Stepaniants S, Beaulaurier J, Wang IM, Rosa R, Cumiskey AM, Luo JM, Luo Q, Shah K, Xiao J, Nickle D, Plump A, Schadt EE, Lusis AJ, Lum PY (2010) Identification and validation of genes affecting aortic lesions in mice. J Clin Investig 120:2414–2422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yazbek SN, Spiezio SH, Nadeau JH, Buchner DA (2010) Ancestral paternal genotype controls body weight and food intake for multiple generations. Hum Mol Genet 19:4134–4144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yazbek SN, Buchner DA, Geisinger JM, Burrage LC, Spiezio SH, Zentner GE, Hsieh CW, Scacheri PC, Croniger CM, Nadeau JH (2011) Deep congenic analysis identifies many strong, context-dependent QTLs, one of which, Slc35b4, regulates obesity and glucose homeostasis. Genome Res 21:1065–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Annie Hill-Baskin (Case Western Reserve University, Department of Genetics and Genome Sciences, Cleveland, OH, USA) for her generous time and excellent work at supplying breeder mice for this study. This work was supported by the National Institutes of Health Grants RR12305 (JHN), HL055362 and DK094311 (RCL) and by DK DK083042, DK090320, DK 089056 (MWS) and the Nutrition Obesity Research Center (DK035816) (MWS; GJM) and the Diabetes Research Center (P30 DK17047) (MWS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renée C. LeBoeuf.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiezio, S.H., Amon, L.M., McMillen, T.S. et al. Genetic determinants of atherosclerosis, obesity, and energy balance in consomic mice. Mamm Genome 25, 549–563 (2014). https://doi.org/10.1007/s00335-014-9530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-014-9530-2

Keywords

Navigation