Skip to main content

Advertisement

Log in

What have rare genetic syndromes taught us about the pathophysiology of the common forms of obesity?

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Obesity is a central feature for several congenital syndromes, including Prader-Willi, Angelman, Bardet-Biedl, Cohen, Alström andBörjeson-Forssman-Lehmann syndromes, and Albright's hereditary osteodystrophy. Although a role for the central nervous system, including the hypothalamus-pituitary axis, has been suggested for the etiology of obesity in these syndromes, the pathophysiologic pathways are as yet not well defined, and in many cases may identify currently unknown mechanisms. Nevertheless, many of the causative genes and unusual mechanisms, including parental imprinting of genes and complex patterns of inheritance, have been identified. We review the latest advances in understanding congenital syndromes in which obesity is purely genetic, drawing on comparisons to genetic studies of obesity in the human population as well as to those in experimental and agricultural animal models. An understanding of the genetic basis for these syndromes will provide a more comprehensive picture of the mechanisms that control food intake and energy balance in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Adler A: Obesity and target organ damage: diabetes. Int J Obes Relat Metab Disord 2002, 4:S11-S14.

    Article  CAS  Google Scholar 

  2. Rashid MN, Fuentes F, Touchon RC, et al.: Obesity and the risk for cardiovascular disease. Prev Cardiol 2003, 6:42–47.

    PubMed  Google Scholar 

  3. Abu-Abid S, Szold A, Klausner J: Obesity and cancer. J Med 2002, 33:73–86.

    PubMed  Google Scholar 

  4. Flegal KM, Carroll MD, Ogden CL, et al.: Prevalence and trends in obesity among US adults, 1999–2000. JAMA 2002, 288:1723–1727.

    Article  PubMed  Google Scholar 

  5. Montague MC: The physiology of obesity. ABNF J 2003, 14:56–60.

    PubMed  Google Scholar 

  6. Stunkard AJ: Genetic contributions to human obesity. Res Publ Assoc Res Nerv Ment Dis 1991, 69:205–218.

    PubMed  CAS  Google Scholar 

  7. Loos RJ, Bouchard C: Obesity-is it a genetic disorder? J Intern Med 2003, 254:401–425.

    Article  PubMed  CAS  Google Scholar 

  8. Chagnon YC, Rankinen T, Snyder EE, et al.: The human obesity gene map: the 2002 update. Obes Res 2003, 11:313–367. Recent comprehensive update that lists all human genetic data on obesity-related genes and chromosome linkages.

    Article  PubMed  CAS  Google Scholar 

  9. Price AR: Fine localization of genes influencing human obesity. In Progress in Obesity Research: 9. Edited by Medeiros-Neto G, et al. Montrouge, France: John Libbey Eurotext; 2003:234–236.

    Google Scholar 

  10. Comuzzie AG: The meritus of the QTL approach in gene discovery in complex traits. In Progress in Obesity Research: 9. Edited by Medeiros-Neto G, et al. Montrouge, France: John Libbey Eurotext; 2003:247–249.

    Google Scholar 

  11. O'Rahilly S, Farooqi IS, Yeo GS, et al.: Minireview: human obesity-lessons from monogenic disorders. Endocrinology 2003, 144:3757–3764.

    Article  PubMed  CAS  Google Scholar 

  12. Clement K, Boutin P, Froguel P: Genetics of obesity. Am J Pharmacogenomics 2002, 2:177–187.

    Article  PubMed  CAS  Google Scholar 

  13. Brockmann GA, Bevova MR: Using mouse models to dissect the genetics of obesity. Trends Genet 2002, 18:367–376. Comprehensive description of mouse genetic data on obesity, including single gene mutations, knockout and transgenic models, and polygenic models. The latter includes QTL mapping of different obesity-related phenotypes, gene interactions, and novel approaches available in the mouse.

    Article  PubMed  CAS  Google Scholar 

  14. Echwald SM: Genetics of human obesity: lessons from mouse models and candidate genes. J Intern Med 1999, 245:653–666.

    Article  PubMed  CAS  Google Scholar 

  15. Dhar M, Webb LS, Smith L, et al.: A novel ATPase on mouse chromosome 7 is a candidate gene for increased body fat. Physiol Genomics 2000, 4:93–100.

    PubMed  CAS  Google Scholar 

  16. Dhar MA, Sommardahl CS, Kirkland T, et al.: Mice heterozygous for Atp10c, a putative amphipath, represent a novel model of obesity and type 2 diabetes. J Nutr 2004, in press.

  17. Gunay-Aygun M, Cassidy SB, Nicholls RD: Prader-Willi and other syndromes associated with obesity and mental retardation. Behav Genet 1997, 27:307–324.

    Article  PubMed  CAS  Google Scholar 

  18. Nicholls RD, Knepper JL: Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet 2001, 2:153–175.

    Article  PubMed  CAS  Google Scholar 

  19. Nicholls RD, Stefan M, Ji H, et al.: Mouse models for Prader-Willi and Angelman syndromes offer insights into novel obesity mechanisms. In Progress in Obesity Research: 9. Edited by Medeiros-Neto G, et al. Montrouge, France: John Libbey Eurotext; 2003:313–319. Recent review of the molecular genetics of PWS, including novel hypotheses for the metabolic basis of the biphasic phenotype.

    Google Scholar 

  20. Hoybye C, Hilding A, Jacobsson H, et al.: Growth hormone treatment improves body composition in adults with Prader-Willi syndrome. Clin Endocrinol 2003, 58:653–661.

    Article  CAS  Google Scholar 

  21. Carrel AL, Myers SE, Whitman BY, et al.: Benefits of long-term GH therapy in Prader-Willi syndrome: a 4-year study. J Clin Endocrinol Metab 2002, 87:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  22. Partsch CJ, Lammer C, Gillessen-Kaesbach G, et al.: Adult patients with Prader-Willi syndrome: clinical characteristics, life circumstances and growth hormone secretion. Growth Horm IGF Res 2000, 10(ppl B):S81-S85.

    Article  PubMed  Google Scholar 

  23. Hoybye C, Frystyk J, Thoren M: The growth hormone-insulin-like growth factor axis in adult patients with Prader-Willi syndrome. Growth Horm IGF Res 2003, 13:269–274.

    Article  PubMed  CAS  Google Scholar 

  24. Hoybye C, Hilding A, Jacobsson H, et al.: Metabolic profile and body composition in adults with Prader-Willi syndrome and severe obesity. J Clin Endocrinol Metab 2002, 87:3590–3597.

    Article  PubMed  CAS  Google Scholar 

  25. Cummings DE, Clement K, Purnell JQ, et al.: Elevated plasma ghrelin levels in Prader-Willi syndrome. Nat Med 2002, 8:643–644.

    Article  PubMed  CAS  Google Scholar 

  26. Haqq AM, Farooqi IS, O'Rahilly S, et al.: Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab 2003, 88:174–178.

    Article  PubMed  CAS  Google Scholar 

  27. Haqq AM, Stadler DD, Rosenfeld RG, et al.: Circulating ghrelin levels are suppressed by meals and octreotide therapy in children with Prader-Willi syndrome. J Clin Endocrinol Metab 2003, 88:3573–3576.

    Article  PubMed  CAS  Google Scholar 

  28. Myers SE, Davis A, Whitman BY, et al.: Leptin concentrations in Prader-Willi syndrome before and after growth hormone replacement. Clin Endocrinol 2000, 52:101–105.

    Article  CAS  Google Scholar 

  29. Goldstone AP, Unmehopa UA, Bloom SR, et al.: Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects. J Clin Endocrinol Metab 2002, 87:927–937.

    Article  PubMed  CAS  Google Scholar 

  30. Ge Y, Ohta T, Driscoll DJ, et al.: Anorexigenic melanocortin signaling in the hypothalamus is augmented in association with failure-to-thrive in a transgenic mouse model for Prader-Willi syndrome. Brain Res 2002, 957:42–45.

    Article  PubMed  CAS  Google Scholar 

  31. Yamasaki K, Joh K, Ohta T, et al.: Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum Mol Genet 2003, 12:837–847.

    Article  PubMed  CAS  Google Scholar 

  32. Lossie AC, Whitney MM, Amidon D, et al.: Distinct phenotypes distinguish the molecular classes of Angelman syndrome. J Med Genet 2001, 38:834–845.

    Article  PubMed  CAS  Google Scholar 

  33. Cattanach BM, Barr JA, Beechey CV, et al.: A candidate model for Angelman syndrome in the mouse. Mamm Genome 1997, 8:472–478.

    Article  PubMed  CAS  Google Scholar 

  34. Kashiwagi A, Meguro M, Hoshiya H, et al.: Predominant maternal expression of the mouse Atp10c in hippocampus and olfactory bulb. J Hum Genet 2003, 48:194–198.

    Article  PubMed  CAS  Google Scholar 

  35. Weinstein LS, Chen M, Liu J: Gsalpha mutations and imprinting defects in human disease. Ann N Y Acad Sci 2002, 968:173–197. Comprehensive review of the complex structure and imprinting of the human and mouse GNAS1 gene that leads to a diverse set of endocrine phenotypes associated with mutations of GNAS1.

    Article  PubMed  CAS  Google Scholar 

  36. Bastepe M, Jüppner H: Editorial: Psuedohypoparathyroidism and mechanisms of resistance toward multiple hormones: molecular evidence to clinical presentation. J Clin Endocrinol Metab 2003, 88:4055–4058.

    Article  PubMed  CAS  Google Scholar 

  37. Carel JC, Le Stunff C, Condamine L, et al.: Resistance to the lipolytic action of epinephrine: a new feature of protein Gs deficiency. J Clin Endocrinol Metab 1999, 84:4127–4131.

    Article  PubMed  CAS  Google Scholar 

  38. Bastepe M, Fröhlich LF, Hendy GN, et al.: Autosomal dominant pseudohypoparathyroidism type 1b is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest 2003,112:1255–1263.

    Article  PubMed  CAS  Google Scholar 

  39. de Koning D-J, Rattink AP, Harlizius B, et al.: Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci U S A 2000, 97:7947–7950. Identifies five QTLs affecting three measures of body composition in a genome-wide scan, of which four were imprinted. This study highlights the significance of imprinted genes for fat and muscle traits affecting body weight.

    Article  PubMed  Google Scholar 

  40. Van Laere A-S, Nguyen M, Braunschweig M, et al.: A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 2003, 425:832–836. Identifies an intronic regulatory mutation in the imprinted IGF2 gene as underlying a paternally inherited QTL affecting body composition (15% to 30% of the variation in muscle mass and 10% to 20% of that for back-fat thickness) in the pig. This study illustrates how regulatory mutations may underlie many QTLs for phenotypic variation in human and animal multifactorial disease, particularly obesity.

    Article  PubMed  CAS  Google Scholar 

  41. Moon YS, Smas CM, Lee K, et al.: Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 2002, 22:5585–5592.

    Article  PubMed  CAS  Google Scholar 

  42. Georges M, Charlier C, Cockett N: The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes. Trends Genet 2003, 19:248–252.

    Article  PubMed  CAS  Google Scholar 

  43. Katsanis N, Lupski JR, Beales PL: Exploring the molecular basis of Bardet-Biedl syndrome. Hum Mol Genet 2001, 10:2293–2299.

    Article  PubMed  CAS  Google Scholar 

  44. Grace C, Beales P, Summerbell C, et al.: Energy metabolism in Bardet-Biedl syndrome. Int J Obes Relat Metab Disord 2003, 27:1319–1324.

    Article  PubMed  CAS  Google Scholar 

  45. Croft JB, Morrel D, Chase CL, et al.: Obesity in heterozygous carriers of the gene for Bardet-Biedl syndrome. Am J Med Genet 1995, 55:12–15.

    Article  PubMed  CAS  Google Scholar 

  46. Mykytyn K, Nishimura DY, Searby CC, et al.: Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet 2002, 31:435–438.

    PubMed  CAS  Google Scholar 

  47. Slavotinek AM, Stone EM, Mykytyn K, et al.: Mutations in MKKS cause Bardet-Biedl syndrome. Nat Genet 2000, 26:15–16.

    Article  PubMed  CAS  Google Scholar 

  48. Katsanis N, Ansley SJ, Badano JL, et al.: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science 2001, 293:2256–2259. Identifies complex inheritance in BBS, with two allelic mutations in one BBS locus and a single mutation in a second BBS gene needed for a clinical phenotype. This serves as a useful model for common multifactorial diseases such as obesity.

    Article  PubMed  CAS  Google Scholar 

  49. Beales PL, Badano JL, Ross AJ, et al.: Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet 2003, 72:1187–1199.

    Article  PubMed  CAS  Google Scholar 

  50. Ansley SJ, Badano JL, Blacque OE, et al.: Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003, 425:628–633. Identifies the eighth BBS locus and shows that human and mouse BBS8 polypeptide is localized to the centrosome or basal body of ciliated cells. Further shows similar findings for four BBS homologues in the worm, C. elegans, suggesting a common basis underlies the pleiotropic phenotypes of BBS, including obesity and diabetes.

    Article  PubMed  CAS  Google Scholar 

  51. Maffei P, Munno V, Marshall JD, et al.: The Alström syndrome: is it a rare or unknown disease? Ann Ital Med Int 2002, 17:221–228.

    PubMed  Google Scholar 

  52. Collin GB, Marshall J D, Ikeda A, et al.: Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat Genet 2002, 31:74–78.

    PubMed  CAS  Google Scholar 

  53. Hearn T, Renforth GL, Spalluto C, et al.: Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nat Genet 2002, 31:79–83.

    PubMed  CAS  Google Scholar 

  54. Andersen JS, Wilkinson CJ, Mayor T, et al.: Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003, 426:570–574.

    Article  PubMed  CAS  Google Scholar 

  55. Chandler KE, Kidd A, Al-Gazali L, et al.: Diagnostic criteria, clinical characteristics, and natural history of Cohen syndrome. J Med Genet 2003, 40:233–241.

    Article  PubMed  CAS  Google Scholar 

  56. Kolehmainen J, Black GCM, Saarinen A, et al.: Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Hum Genet 2003, 72:1359–1369.

    Article  PubMed  CAS  Google Scholar 

  57. DeLozier-Blanchet CD, Haenggeli CA, Bottani A: MEHMO, a novel syndrome: assignment of disease locus to Xp21.1-p22.13. Mental retardation, epileptic seizures, hypogonadism and genitalism, microcephaly, obesity. Eur J Hum Genet 1999, 7:621–622.

    Article  PubMed  CAS  Google Scholar 

  58. Leshinsky-Silver E, Zinger A, Bibi CN, et al.: MEHMO (Mental retardation, Epileptic seizures, Hypogenitalism, Microcephaly, Obesity): a new X-linked mitochondrial disorder. Eur J Hum Genet 2002, 10:226–230.

    Article  PubMed  CAS  Google Scholar 

  59. Kubota T, Oga S, Ohashi H, et al.: Borjeson-Forssman-Lehmann syndrome in a woman with skewed X-chromosome inactivation. Am J Med Genet 1999, 87:258–261.

    Article  PubMed  CAS  Google Scholar 

  60. Lower KM, Turner G, Kerr BA, et al.: Mutations in PHF6 are associated with Borjeson-Forssman-Lehmann syndrome. Nat Genet 2002, 32:661–665.

    Article  PubMed  CAS  Google Scholar 

  61. Inui A: Obesity-a chronic health problem in cloned mice. Trends Pharmacol Sci 2003, 24:77–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefan, M., Nicholls, R.D. What have rare genetic syndromes taught us about the pathophysiology of the common forms of obesity?. Curr Diab Rep 4, 143–150 (2004). https://doi.org/10.1007/s11892-004-0070-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-004-0070-0

Keywords

Navigation