Skip to main content
Log in

The mitochondrial unfolded protein response in mammalian physiology

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Mitochondria, the main site of cellular energy harvesting, are derived from proteobacteria that evolved within our cells in endosymbiosis. Mitochondria retained vestiges of their proteobacterial genome, the circular mitochondrial DNA, which encodes 13 subunits of the oxidative phosphorylation multiprotein complexes in the electron transport chain (ETC), while the remaining ~80 ETC components are encoded in the nuclear DNA (nDNA). A further ~1,400 proteins, which are essential for mitochondrial function are also encoded in nDNA. Thus, a majority of mitochondrial proteins are translated in the cytoplasm, then imported, processed, and assembled in the mitochondria. An intricate protein quality control (PQC) network, constituted of chaperones and proteases that refold or degrade defective proteins, maintains mitochondrial proteostasis and ensures the cell and organism health. The mitochondrial unfolded protein response is a relatively recently discovered PQC pathway, which senses the proteostatic disturbances specifically in the mitochondria and resolves the stress by retrograde signaling to the nucleus and consequent transcriptional activation of protective genes. This PQC system does not only transiently resolve the local stress but also can have long-lasting effects on whole body metabolism, fitness, and longevity. A delicate tuning of its activation levels might constitute a treatment of various diseases, such as metabolic diseases, cancer, and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldridge JE, Horibe T, Hoogenraad NJ (2007) Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS ONE 2:e874

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreux PA, Houtkooper RH, Auwerx J (2013) Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 12:465–483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Argmann CA, Chambon P, Auwerx J (2005) Mouse phenogenomics: the fast track to “systems metabolism”. Cell Metab 2:349–360

    Article  PubMed  CAS  Google Scholar 

  • Baker BM, Nargund AM, Sun T, Haynes CM (2012) Protective coupling of mitochondrial function and protein synthesis via the eIF2alpha kinase GCN-2. PLoS Genet 8:e1002760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D (2006) Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174:229–239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40:238–252

    Article  PubMed  CAS  Google Scholar 

  • Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  PubMed  CAS  Google Scholar 

  • de Castro IP, Martins LM, Loh SH (2011) Mitochondrial quality control and Parkinson’s disease: a pathway unfolds. Mol Neurobiol 43:80–86

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  PubMed  CAS  Google Scholar 

  • Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fischer F, Hamann A, Osiewacz HD (2012) Mitochondrial quality control: an integrated network of pathways. Trends Biochem Sci 37:284–292

    Article  PubMed  CAS  Google Scholar 

  • Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C (2014) The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. Cell Metab 19:357–372

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  PubMed  CAS  Google Scholar 

  • Haynes CM, Petrova K, Benedetti C, Yang Y, Ron D (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13:467–480

    Article  PubMed  CAS  Google Scholar 

  • Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D (2010) The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37:529–540

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Horibe T, Hoogenraad NJ (2007) The chop gene contains an element for the positive regulation of the mitochondrial unfolded protein response. PLoS ONE 2:e835

    Article  PubMed  PubMed Central  Google Scholar 

  • Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457

    Article  PubMed  CAS  Google Scholar 

  • Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. In: Proceedings of the National Academy of Sciences of the United States of America, vol 110, pp 19507–19512

  • Jin SM, Youle RJ (2013) The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9:1750–1757

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BK, Steffen KK, Kaeberlein M (2007) Ruminations on dietary restriction and aging. Cell Mol Life Sci 64:1323–1328

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim Do H, Hur KY, Kim HK et al (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19:83–92

    Article  PubMed  CAS  Google Scholar 

  • Kleinridders A, Lauritzen HP, Ussar S, Christensen JH, Mori MA, Bross P, Kahn CR (2013) Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. J Clin Invest 123(11):4667–4680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee MD, She Y, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG et al (2004) Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J Clin Invest 114:1107–1116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Lu B (2010) Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet 6:e1001237

    Article  PubMed  PubMed Central  Google Scholar 

  • Loson OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Hoj PB, Hoogenraad NJ (1996) Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem/FEBS 240:98–103

    Article  CAS  Google Scholar 

  • Mori K (2009) Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146:743–750

    Article  PubMed  CAS  Google Scholar 

  • Mouchiroud L, Houtkooper RH, Auwerx J (2013a) NAD(+) metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol 48:397–408

    Article  PubMed  CAS  Google Scholar 

  • Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, Mottis A, Jo YS, Viswanathan M, Schoonjans K et al (2013b) The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  PubMed  CAS  Google Scholar 

  • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  PubMed  CAS  Google Scholar 

  • Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712

    Article  PubMed  CAS  Google Scholar 

  • Papa L, Germain D (2011) Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J Cell Sci 124:1396–1402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimenta de Castro I, Costa AC, Lam D, Tufi R, Fedele V, Moisoi N, Dinsdale D, Deas E, Loh SH, Martins LM (2012) Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster. Cell Death Differ 19:1308–1316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Radke S, Chander H, Schafer P, Meiss G, Kruger R, Schulz JB, Germain D (2008) Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J Biol Chem 283:12681–12685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rainbolt TK, Atanassova N, Genereux JC, Wiseman RL (2013) Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab 18:908–919

    Article  PubMed  CAS  Google Scholar 

  • Rath E, Berger E, Messlik A, Nunes T, Liu B, Kim SC, Hoogenraad N, Sans M, Sartor RB, Haller D (2012) Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut 61:1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 101:9309–9314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    Article  PubMed  CAS  Google Scholar 

  • Richter U, Lahtinen T, Marttinen P, Myohanen M, Greco D, Cannino G, Jacobs HT, Lietzen N, Nyman TA, Battersby BJ (2013) A mitochondrial ribosomal and RNA decay pathway blocks cell proliferation. Curr Biol 23:535–541

    Article  PubMed  CAS  Google Scholar 

  • Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    Article  PubMed  CAS  Google Scholar 

  • Rugarli EI, Langer T (2012) Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31:1336–1349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    Article  PubMed  CAS  Google Scholar 

  • Schleit J, Johnson SC, Bennett CF, Simko M, Trongtham N, Castanza A, Hsieh EJ, Moller RM, Wasko BM, Delaney JR et al (2013) Molecular mechanisms underlying genotype-dependent responses to dietary restriction. Aging Cell 12:1050–1061

    Article  PubMed  CAS  Google Scholar 

  • Schmidt O, Pfanner N, Meisinger C (2010) Mitochondrial protein import: from proteomics to functional mechanisms. Nat Rev Mol Cell Biol 11:655–667

    Article  PubMed  CAS  Google Scholar 

  • Schroder M (2006) The unfolded protein response. Mol Biotechnol 34:279–290

    Article  PubMed  CAS  Google Scholar 

  • Sheth A, Escobar-Alvarez S, Gardner J, Ran L, Heaney ML, Scheinberg DA (2014) Inhibition of human mitochondrial peptide deformylase causes apoptosis in c-myc-overexpressing hematopoietic cancers. Cell Death Dis 5:e1152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skrtic M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N et al (2011) Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20:674–688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suomalainen A, Elo JM, Pietilainen KH, Hakonen AH, Sevastianova K, Korpela M, Isohanni P, Marjavaara SK, Tyni T, Kiuru-Enari S et al (2011) FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 10:806–818

    Article  PubMed  CAS  Google Scholar 

  • Supale S, Thorel F, Merkwirth C, Gjinovci A, Herrera PL, Scorrano L, Meda P, Langer T, Maechler P (2013) Loss of prohibitin induces mitochondrial damages altering beta-cell function and survival and is responsible for gradual diabetes development. Diabetes 62:3488–3499

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698

    Article  PubMed  CAS  Google Scholar 

  • Wallin IE (1993) Symbionticism in the light of recent cytological investigations–Ivan E. Wallin, 1969. Bio Syst 31:181–183

    CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zuo X, Kucejova B, Chen XJ (2008) Reduced cytosolic protein synthesis suppresses mitochondrial degeneration. Nat Cell Biol 10:1090–1097

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Wek RC, Cavener DR (2007) Translational control and the unfolded protein response. Antioxid Redox Signal 9:2357–2371

    Article  PubMed  CAS  Google Scholar 

  • Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11

    Article  PubMed  CAS  Google Scholar 

  • Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP, Ron D (2004) Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117:4055–4066

    Article  PubMed  CAS  Google Scholar 

  • Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zid BM, Rogers AN, Katewa SD, Vargas MA, Kolipinski MC, Lu TA, Benzer S, Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:149–160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

JA is the Nestlé Chair in Energy Metabolism. Work in the laboratory is supported by the Ecole Polytechnique Fédérale de Lausanne, the National Institutes of Health (R01AG043930), the Swiss National Science Foundation (31003A-124713), and Systems X (51RTP0-151019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Auwerx.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottis, A., Jovaisaite, V. & Auwerx, J. The mitochondrial unfolded protein response in mammalian physiology. Mamm Genome 25, 424–433 (2014). https://doi.org/10.1007/s00335-014-9525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-014-9525-z

Keywords

Navigation