Skip to main content
Log in

The chimpanzee GH locus: composition, organization, and evolution

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

In most mammals the growth hormone (GH) locus comprises a single gene expressed primarily in the anterior pituitary gland. However, in higher primates multiple duplications of the GH gene gave rise to a complex locus containing several genes. In man this locus comprises five genes, including GH-N (expressed in pituitary) and four genes expressed in the placenta, but in other species the number and organization of these genes vary. The situation in chimpanzee has been unclear, with suggestions of up to seven GH-like genes. We have re-examined the GH locus in chimpanzee and have deduced the complete sequence. The locus includes five genes apparently organized in a fashion similar to that in human, with two of these genes encoding GH-like proteins, and three encoding chorionic somatomammotropins/placental lactogens (CSHs/PLs). There are notable differences between the human and chimpanzee loci with regard to the expressed proteins, gene regulation, and gene conversion events. In particular, one human gene (hCSH-L) has changed substantially since the chimpanzee/human split, potentially becoming a pseudogene, while the corresponding chimpanzee gene (CSH-A1) has been conserved, giving a product almost identical to the adjacent CSH-A2. Chimpanzee appears to produce two CSHs, with potentially differing biological properties, whereas human produces a single CSH. The pattern of gene conversion in human has been quite different from that in chimpanzee. The region around the GH-N gene in chimpanzee is remarkably polymorphic, unlike the corresponding region in human. The results shed new light on the complex evolution of the GH locus in higher primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Barrera-Saldaña HA, Seeburg PH, Saunders GF (1983) Two structurally different genes produce the same secreted human placental lactogen hormone. J Biol Chem 258:3787–3793

    PubMed  Google Scholar 

  • Chen EY, Liao YC, Smith DH, Barrera-Saldana HA, Gelinas RE, Seeburg PH (1989) The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics 4:479–497

    Article  PubMed  CAS  Google Scholar 

  • de Vos AM, Ultsch M, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255:306–312

    Article  PubMed  Google Scholar 

  • Eberhardt NL, Jiang SW, Shepard AR, Arnold AM, Trujillo MA (1996) Hormonal and cell-specific regulation of the human growth hormone and chorionic somatomammotropin genes. Prog Nucleic Acid Res Mol Biol 54:127–163

    Article  PubMed  CAS  Google Scholar 

  • Elefant F, Su Y, Liebhaber SA, Cooke NE (2000) Patterns of histone acetylation suggest dual pathways for gene activation by a bifunctional locus control region. EMBO J 19:6814–6822

    Article  PubMed  CAS  Google Scholar 

  • Forsyth IA, Wallis M (2002) Growth hormone and prolactin—molecular and functional evolution. J Mammary Gland Biol Neoplasia 7:291–312

    Article  PubMed  Google Scholar 

  • Frankenne F, Closset J, Gomez F, Scippo ML, Smal J, Hennen G (1988) The physiology of growth hormones (GHs) in pregnant women and partial characterization of the placental GH variant. J Clin Endocrinol Metab 66:1171–1180

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Franco C, Weinberger C, Albert VR, Evans RM, Rosenfeld MG (1987) A c-erb-A binding-site in rat growth hormone gene mediates trans-activation by thyroid-hormone. Nature 329:738–741

    Article  PubMed  CAS  Google Scholar 

  • Golos TG, Durning M, Fisher JM, Fowler PD (1993) Cloning of four GH/chorionic somatomammotropin-related complementary deoxyribonucleic acids differentially expressed during pregnancy in the rhesus monkey placenta. Endocrinology 133:1744–1752

    Article  PubMed  CAS  Google Scholar 

  • González Alvarez R, Revol de Mendoza A, Esquivel Escobedo D, Corrales Félix G, Rodríguez Sánchez I, González V, Dávila G, Cao Q, de Jong P, Fu YX, Barrera Saldaña HA (2006) Growth hormone locus expands and diverges after the separation of New and Old World Monkeys. Gene 380:38–45

    Article  PubMed  Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  PubMed  CAS  Google Scholar 

  • Ho Y, Liebhaber SA, Cooke NE (2004) Activation of the human GH gene cluster: roles for targeted chromatin modification. Trends Endocrinol Metab 15:40–45

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin P, Oury C, Peers B, Morin A, Belayew A, Martial JA (1994) Characterization of a single strong tissue-specific enhancer downstream from the three human genes encoding placental lactogen. Mol Cell Biol 14:93–103

    PubMed  CAS  Google Scholar 

  • Jacquemin P, Alsat E, Oury C, Belayew A, Muller M, Evain-Brion D, Martial JA (1996) The enhancers of the human placental lactogen B, A, and L genes: progressive activation during in vitro trophoblast differentiation and importance of the DF-3 element in determining their respective activities. DNA Cell Biol 15:845–854

    Article  PubMed  CAS  Google Scholar 

  • Jiang SW, Shepard AR, Eberhardt NL (1995) An initiator element is required for maximal human chorionic somatomammotropin gene promoter and enhancer function. J Biol Chem 270:3683–3692

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Cooper DN (2007) Understanding the recent evolution of the human genome: insights from human–chimpanzee genome comparisons. Human Mutat 28:99–130

    Article  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  • Krawczak M, Chuzhanova NA, Cooper DN (1999) Evolution of the proximal promoter region of the mammalian growth hormone gene. Gene 237:143–151

    Article  PubMed  CAS  Google Scholar 

  • Lacroix MC, Guibourdenche J, Frendo JL, Muller F, Evain-Brion D (2002) Human placental growth hormone—a review. Placenta 23(Suppl A):S87–S94

    Article  PubMed  Google Scholar 

  • Leidig F, Shepard AR, Zhang W, Stelter A, Cattini PA, Baxter JD, Eberhardt NL (1992) Thyroid hormone responsiveness in human growth hormone-related genes. Possible correlation with receptor-induced DNA conformational changes. J Biol Chem 267:913–921

    PubMed  CAS  Google Scholar 

  • Lemaigre FP, Courtois SJ, Lafontaine DA, Rousseau GG (1989) Evidence that the upstream stimulatory factor and the Spl transcription factor bind in vitro to the promoter of the human-growth-hormone gene. Eur J Biochem 181:555–561

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Ye C, Shi P, Zou XJ, Xiao R, Gong YY, Zhang YP (2005) Independent origin of the growth hormone gene family in New World monkeys and Old World monkeys/hominoids. J Mol Endocrinol 35:399–409

    Article  PubMed  CAS  Google Scholar 

  • Liu JC, Makova KD, Adkins RM, Gibson S, Li WH (2001) Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor. Mol Biol Evol 18:945–953

    Article  PubMed  CAS  Google Scholar 

  • Lytras A, Surabhi RM, Zhang JF, Jin Y, Cattini PA (1996) ‘Repair’ of the chorionic somatomammotropin-A ‘enhancer’ region reveals a novel functional element in the chorionic somatomammotropin-B enhancer. Mol Cell Endocrinol 119:1–10

    Article  PubMed  CAS  Google Scholar 

  • Männik J, Vaas P, Rull K, Teesalu P, Rebane T, Laan M (2010) Differential expression profile of growth hormone/chorionic somatomammotropin genes in placenta of small- and large-for-gestational-age newborns. J Clin Endocrinol Metab 95:2433–2442

    Article  PubMed  Google Scholar 

  • Mikkelsen TS et al (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87

    Article  CAS  Google Scholar 

  • Misra-Press A, Cooke NE, Liebhaber SA (1994) Complex alternative splicing partially inactivates the human chorionic somatomammotropin-like (hCS-L) gene. J Biol Chem 269:23220–23229

    PubMed  CAS  Google Scholar 

  • Norquay LD, Yang X, Jin Y, Detillieux KA, Cattini PA (2006) Hepatocyte nuclear factor-3α binding at P sequences of the human growth hormone locus is associated with pituitary repressor function. Mol Endocrinol 20:598–607

    Article  PubMed  CAS  Google Scholar 

  • Papper Z, Jameson NM, Romero R, Weckle AL, Mittal P, Benirschke K, Santolaya-Forgas J, Uddin M, Haig D, Goodman M, Wildman DE (2009) Ancient origin of placental expression in the growth hormone genes of anthropoid primates. Proc Natl Acad Sci USA 106:17083–17088

    Article  PubMed  CAS  Google Scholar 

  • Reséndez-Pérez D, Ramirez-Solís R, Varela-Echavarría A, Martínez-Rodríguez HG, Barrera-Saldaña HA (1990) Coding potential of transfected human placental lactogen genes. Nucl Acids Res 18:4665–4670

    Article  PubMed  Google Scholar 

  • Revol de Mendoza A, Esquivel Escobedo D, Santiago Alarcón D, Barrera Saldaña H (2001) Independent duplication of the growth hormone gene in three anthropoidean lineages. J Endocr Gen 2:151–159

    CAS  Google Scholar 

  • Revol de Mendoza A, Esquivel Escobedo D, Martínez Dávila I, Barrera Saldaña H (2004) Expansion and divergence of the GH locus between spider monkey and chimpanzee. Gene 336:185–193

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Sánchez IP, Tejero ME, Cole SA, Comuzzie AG, Nathanielsz PW, Wallis M, Barrera-Saldaña HA (2010) Growth hormone-related genes from baboon (Papio hamadryas): characterization, placental expression and evolutionary aspects. Gene 450:1–7

    Article  PubMed  Google Scholar 

  • Rogers BL, Sobnosky MG, Saunders GF (1986) Transcriptional enhancer within the human placental-lactogen and growth-hormone multigene cluster. Nucl Acids Res 14:7647–7659

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SA (1999) GENECONV: a computer package for the statistical detection of gene conversion. Distributed by the author, Department of Mathematics, Washington University, St. Louis, MO. Available at: http://www.math.wustl.edu/~sawyer/geneconv. Accessed 20 Jan 2012

  • Slater EP, Rabenau O, Karin M, Baxter JD, Beato M (1985) Glucocorticoid receptor binding and activation of a heterologous promoter by dexamethasone by the first intron of the human growth hormone gene. Mol Cell Biol 5(11):2984–2992

    PubMed  CAS  Google Scholar 

  • Smit AFA, Hubley R, Green P (1996-2010) RepeatMasker Open-3.0. Available at http://www.repeatmasker.org

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (* and Other Methods), ver. 4. Sinauer, Sunderland

  • Theill LE, Karin M (1993) Transcriptional control of GH expression and anterior pituitary development. Endocr Rev 14:670–689

    PubMed  CAS  Google Scholar 

  • Walker WH, Fitzpatrick SL, Saunders GF (1990) Human placental-lactogen transcriptional enhancer—tissue-specificity and binding with specific proteins. J Biol Chem 265:12940–12948

    PubMed  CAS  Google Scholar 

  • Wallis M (1996) The molecular evolution of vertebrate growth hormones: a pattern of near-stasis interrupted by sustained bursts of rapid change. J Mol Evol 43:93–100

    Article  PubMed  CAS  Google Scholar 

  • Wallis M (2008) Mammalian genome projects reveal new growth hormone (GH) sequences. Characterization of the GH-encoding genes of armadillo (Dasypus novemcinctus), hedgehog (Erinaceus europaeus), bat (Myotis lucifugus), hyrax (Procavia capensis), shrew (Sorex araneus), ground squirrel (Spermophilus tridecemlineatus), elephant (Loxodonta africana), cat (Felis catus) and opossum (Monodelphis domestica). Gen Comp Endocrinol 155:271–279

    Article  PubMed  CAS  Google Scholar 

  • Wallis OC, Wallis M (2002) Characterisation of the GH gene cluster in a new-world monkey, the marmoset (Callithrix jacchus). J Mol Endocrinol 29:89–97

    Article  PubMed  CAS  Google Scholar 

  • Wallis OC, Wallis M (2006) Evolution of growth hormone in primates: the GH gene clusters of the New World monkeys marmoset (Callithrix jacchus) and white-fronted capuchin (Cebus albifrons). J Mol Evol 63:591–601

    Article  PubMed  CAS  Google Scholar 

  • Wallis OC, Zhang YP, Wallis M (2001) Molecular evolution of GH in primates: characterization of the GH genes from slow loris and marmoset defines an episode of rapid evolutionary change. J Mol Endocrinol 26:249–258

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Ye C, Li Y, Shi P, Zhang YP (2005) Molecular evolution of growth hormone gene family in old world monkeys and hominoids. Gene 350:183–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sergio Lozano-Rodriguez, MD, and Hugo R. Gonzalez Cardenas for their critical reading of the manuscript. This research was possible thanks to grants contributed by CONACYT (Q-43987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo A. Barrera-Saldaña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Maya, A.A., Rodríguez-Sánchez, I.P., de Jong, P. et al. The chimpanzee GH locus: composition, organization, and evolution. Mamm Genome 23, 387–398 (2012). https://doi.org/10.1007/s00335-012-9392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-012-9392-4

Keywords

Navigation