Skip to main content
Log in

QTL and gene expression analyses identify genes affecting carcass weight and marbling on BTA14 in Hanwoo (Korean Cattle)

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Causal mutations affecting quantitative trait variation can be good targets for marker-assisted selection for carcass traits in beef cattle. In this study, linkage and linkage disequilibrium analysis (LDLA) for four carcass traits was undertaken using 19 markers on bovine chromosome 14. The LDLA analysis detected quantitative trait loci (QTL) for carcass weight (CWT) and eye muscle area (EMA) at the same position at around 50 cM and surrounded by the markers FABP4SNP2774C>G and FABP4_μsat3237. The QTL for marbling (MAR) was identified at the midpoint of markers BMS4513 and RM137 in a 3.5-cM marker interval. The most likely position for a second QTL for CWT was found at the midpoint of tenth marker bracket (FABP4SNP2774C>G and FABP4_μsat3237). For this marker bracket, the total number of haplotypes was 34 with a most common frequency of 0.118. Effects of haplotypes on CWT varied from a −5-kg deviation for haplotype 6 to +8 kg for haplotype 23. To determine which genes contribute to the QTL effect, gene expression analysis was performed in muscle for a wide range of phenotypes. The results demonstrate that two genes, LOC781182 (p = 0.002) and TRPS1 (p = 0.006) were upregulated with increasing CWT and EMA, whereas only LOC614744 (p = 0.04) has a significant effect on intramuscular fat (IMF) content. Two genetic markers detected in FABP4 were the most likely QTL position in this QTL study, but FABP4 did not show a significant effect on both traits (CWT and EMA) in gene expression analysis. We conclude that three genes could be potential causal genes affecting carcass traits CWT, EMA, and IMF in Hanwoo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  PubMed  CAS  Google Scholar 

  • Animal Product Grading Service (APGS) (1995) Report of business for animal products grading. Animal Products Grading Systems, National Livestock Co-operatives Federation, Korea

    Google Scholar 

  • Bina J, Noah EL, Michael RG, Seema D, Bryan F et al (2005) Transcriptional profiling with a blood pressure QTL interval-specific oligonucleotide array. Physiol Genomics 23:318–326

    Article  Google Scholar 

  • Bostian ML, Fish DL, Webb NB, Arey JJ (1985) Automated methods for determination of fat and moisture in meat and poultry products: collaborative study. J Assoc Off Anal Chem 68:876–880

    PubMed  CAS  Google Scholar 

  • Brandt U, Trumpower B (1994) The proton motive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol 29:165–197

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A et al (2005) Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res 15:936–944

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S (2004) The many faces of mitochondrial disease. Mitochondrion 4:799–807

    Article  PubMed  CAS  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml: user manual. NSW Department of Primary Industries, Orange

    Google Scholar 

  • Hocquette JF, Gondret F, Baeza E, Medale F, Jurie C, Pethick EW (2010) Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative marker. Animal 4:303–319

    Article  CAS  Google Scholar 

  • Hu Z, Fritz ER, Reecy JM (2007) AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res 35:D604–D609

    Article  PubMed  CAS  Google Scholar 

  • Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H et al (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253

    Article  PubMed  CAS  Google Scholar 

  • Jurie C, Cassar-Malek I, Bonnet M, Leroux C, Bauchart D, Boulesteix P, Pethick DW, Hocquette JF (2007) Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J Anim Sci 85:2660–2669

    Article  PubMed  CAS  Google Scholar 

  • Kim JJ, Farnir F, Savell J, Taylor JF (2003) Detection of quantitative trait for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. J Anim Sci 81:1933–1942

    PubMed  CAS  Google Scholar 

  • Knott SA, Haley CS (1992) Aspects of maximum likelihood methods for the mapping of quantitative trait loci in line crosses. Genet Res 60:139–151

    Article  Google Scholar 

  • Kunej T, Wang Z, Michal JJ, Daniels TF, Magnuson NS et al (2007) Functional UQCRC1 polymorphisms affect promoter activity and body lipid accumulation. Obesity 15:2896–2901

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, van der Werf JH (2004) The efficiency of designs for fine-mapping of quantitative trait loci using combined linkage disequilibrium and linkage with a general pedigree. Genet Sel Evol 36:145–161

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Gondro C, van der Werf JH, Kim NK, Lim D, Park EW, Oh SJ, Gibson JP, Thompson JM (2010a) Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean cattle). BMC Genomics 11:623

    Article  PubMed  Google Scholar 

  • Lee SH, Van Der Werf JH, Lee SH, Park EW, Oh SJ et al (2010b) Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean Cattle). Anim Genet 41:442–444

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Malik TH, von Stechow D, Bronson RT, Shivdasani RA (2002) Deletion of the GATA domain of TRPS1 causes an absence of facial hair and provides new insights into the bone disorder in inherited tricho-rhino-phalangeal syndromes. Mol Cell Biol 22:8592–8600

    Article  PubMed  CAS  Google Scholar 

  • Marques E, Givry SD, Stothard P, Murdoch B, Wan Z et al (2007) A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly. BMC Genomics 8:1–10

    Article  Google Scholar 

  • Mizoshita K, Takano A, Watanabe T, Takasuga A, Sugimoto Y (2005) Identification of a 1.1-Mb region for a carcass weight QTL on bovine chromosome 14. Mamm Genome 16:532–537

    Article  PubMed  Google Scholar 

  • Momeni P, Glockner G, Schmidt O, von Holtum D, Albrecht B et al (2000) Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 24:71–74

    Article  PubMed  CAS  Google Scholar 

  • Olsen HG, Lien S, Gautier M, Nilsen H, Roseth A et al (2005) Mapping of a milk production quantitative trait locus to a 420-kb region on bovine chromosome 6. Genetics 169:275–283

    Article  PubMed  CAS  Google Scholar 

  • Park EW, Yoon DH, Lee SH, Cho YM, Lee JH et al (2006) Identification of single nucleotide polymorphism for the adipocyte fatty acid binding protein (FABP4) and its SNPs is associated with marbling score in Hanwoo steers. In: Proceedings of the 30th international conference on animal genetics, Porto Seguro, Brazil, 20–25 Aug 2006, p D422

  • Polineni P, Aragonda P, Xavier SR, Furuta R, Adelson DL (2006) The bovine QTL viewer: a web-accessible database of bovine quantitative trait loci. BMC Bioinformatics 7:283

    Article  PubMed  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ron M, Israeli G, Seroussi E, Weller JI, Gregg JP et al (2007) Combining mouse mammary gland gene expression and comparative mapping for the identification of candidate genes for QTL of milk production traits in cattle. BMC Genomics 8:1–11

    Article  Google Scholar 

  • Sheehy PA, Riley LG, Raadsma HW, Williamson P, Wynn PC (2009) A functional genomics approach to evaluate candidate genes located in a QTL interval for milk production traits on BTA6. Anim Genet 40:492–498

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the International Collaborative Research Fund (Grant No. 200712A01032083) between the Rural Development Administration (RDA) in Korea and Cooperative Research Centre for Beef Genetic Technologies in Australia. Seung Hwan Lee held an International Postgraduate Research Scholarship (IPRS) from University of New England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Hwan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.H., van der Werf, J.H.J., Kim, N.K. et al. QTL and gene expression analyses identify genes affecting carcass weight and marbling on BTA14 in Hanwoo (Korean Cattle). Mamm Genome 22, 589–601 (2011). https://doi.org/10.1007/s00335-011-9331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9331-9

Keywords

Navigation