Skip to main content

Advertisement

Log in

Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Cancer is a genetic and epigenetic disease. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been shown to be deregulated in many diseases including cancer. An intertwined connection between epigenetics and miRNAs has been supported by the recent identification of a specific subgroup of miRNAs called “epi-miRNAs” that can directly and indirectly modulate the activity of the epigenetic machinery. The complexity of this connection is enhanced by the epigenetic regulation of miRNA expression that generates a fine regulatory feedback loop. This review focuses on how epigenetics affects the miRNome and how the recently identified epi-miRNAs regulate the epigenome in human cancers, ultimately contributing to human carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L et al (2009) Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69:4443–4453

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M et al (2009) DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124:2367–2374

    Article  CAS  PubMed  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S et al (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15:268–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  • Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brueckner B, Stresemann C, Kuner R, Mund C, Musch T et al (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev 6:857–866

    Article  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New Engl J Med 353:1793–1801

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 105:5166–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6:2127–2132

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M et al (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103:7024–7029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184–192

    Article  CAS  PubMed  Google Scholar 

  • Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B et al (2008) Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68:5049–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng S, Calin GA, Croce CM, Coukos G, Zhang L (2008) Mechanisms of microRNA deregulation in human cancer. Cell Cycle 7:2643–2646

    Article  CAS  PubMed  Google Scholar 

  • Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N et al (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104:15805–15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri M, Croce CM, Calin GA (2008a) MicroRNAs. Cancer J 14:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Andreeff M, Kantarjian HM, Garcia-Manero G et al (2008b) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22:1095–1105

    Article  CAS  PubMed  Google Scholar 

  • Fabbri M, Croce CM, Calin GA (2009) MicroRNAs in the ontogeny of leukemias and lymphomas. Leukemia Lymphoma 50:160–170

    Article  CAS  PubMed  Google Scholar 

  • Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M et al (2007) Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12:457–466

    Article  CAS  PubMed  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A et al (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC et al (2009) The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 69:2623–2629

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene re-expression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    Article  CAS  PubMed  Google Scholar 

  • Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65:3509–3512

    Article  CAS  PubMed  Google Scholar 

  • Harfe BD (2005) MicroRNAs in vertebrate development. Curr Opin Genet Dev 15:410–415

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R et al (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biol 10:202–210

    Article  CAS  PubMed  Google Scholar 

  • Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y et al (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96:111–115

    Article  CAS  PubMed  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G et al (2009) Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D et al (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214:17–24

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67:10117–10122

    Article  CAS  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    Article  CAS  PubMed  Google Scholar 

  • Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105:13556–13561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  CAS  PubMed  Google Scholar 

  • Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H et al (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST et al (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  CAS  PubMed  Google Scholar 

  • Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7:3655–3660

    Article  CAS  PubMed  Google Scholar 

  • Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM et al (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28:1714–1724

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15:200–205

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roman-Gomez J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A et al (2009) Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 27:1316–1322

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC et al (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379:726–731

    Article  CAS  PubMed  Google Scholar 

  • Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Sevignani C, Calin GA, Siracusa LD, Croce CM (2006) Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome 17:189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F et al (2008) MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 15:259–267

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q et al (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thai TH, Calado DP, Casola S, Ansel KM, Xiao C et al (2007) Regulation of the germinal center response by microRNA-155. Science 316:604–608

    Article  CAS  PubMed  Google Scholar 

  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD et al (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K et al (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68:4123–4132

    Article  CAS  PubMed  Google Scholar 

  • Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK et al (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580:4214–4217

    Article  CAS  PubMed  Google Scholar 

  • Varambally S, Cao Q, Mani RS, Shankar S, Wang X et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    Article  CAS  PubMed  Google Scholar 

  • Vatolin S, Navaratne K, Weil RJ (2006) A novel method to detect functional microRNA targets. J Mol Biol 358:983–996

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Nicola Valeri is supported by an American-Italian Cancer Foundation Post-Doctoral Research Fellowship. Muller Fabbri is supported by a 2009 Kimmel Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muller Fabbri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valeri, N., Vannini, I., Fanini, F. et al. Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 20, 573–580 (2009). https://doi.org/10.1007/s00335-009-9206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9206-5

Keywords

Navigation