Skip to main content

Advertisement

Log in

The role of landscape structure in determining palynological and floristic richness

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The associations between floristic and palynological richness and landscape structure were studied based on modern pollen–vegetation data from a patchy cultural landscape in southern Estonia (northern temperate vegetation zone). Nine study sites (small lakes and their surrounding vegetation) represent land cover gradient from closed forest to semi-open vegetation. Floristic richness (number of species) and floristic richness of pollen types (number of pollen-equivalent taxa) were used to describe the vegetation within the radius of 250 m from the pollen sampling sites. Palynological richness was calculated to describe the modern pollen samples diversity. Landscape structure was estimated on the basis of landscape openness and three landscape diversity measures: richness of community patches, Simpson evenness of community patches and Simpson diversity of community patches. To study the effect of the spatial scale of landscapes on the vegetation–landscape and pollen–landscape associations, landscape structure was estimated within eight radii (250–2,000 m) around each lake. The results showed that landscape openness was the most important determinant of both floristic richness and palynological richness in southern Estonia and that landscape diversity estimated by Simpson diversity index was also significantly associated with the richness estimates. Floristic and palynological richness were significantly positively correlated with landscape structure within the radii greater than 1,000 m from the pollen sampling sites, which is similar to the estimated Relevant Source Area of Pollen in southern Estonia. We conclude that within one floristic or climatic region, palynological richness gives reliable estimates about the variation in floristic richness and landscape structure; however, caution must be taken when comparing pollen-inferred vegetation diversities from different regions or when interpreting fossil pollen records from times with highly different vegetation associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen ST (1960) Silicone oil as a mounting medium for pollen grains. Dan Geol Unders 4:1–24

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Berglund BE, Gaillard M-J, Björkman L, Persson T (2008) Long-term changes in floristic diversity in southern Sweden: palynological richness, vegetation dynamics and land-use. Veget Hist Archaeobot 17:573–583

    Article  Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Aviron S, Baudry J, Bukacek R, Burel F, Cerny M, De Blust G, De Cock R, Diekotter T, Dietz H, Dirksen J, Dormann C, Durka W, Frenzel M, Hamersky R, Hendrickx F, Herzog F, Klotz S, Koolstra B, Lausch A, Le Coeur D, Maelfait JP, Opdam P, Roubalova M, Schermann A, Schermann N, Schmidt T, Schweiger O, Smulders MJM, Speelmans M, Simova P, Verboom J, Van Wingerden WKRE, Zobel M, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–151

    Article  Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data. Holocene 2:1–10

    Google Scholar 

  • Bray JB, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Broström A, Gaillard MJ, Ihse M, Odgaard BV (1998) Pollen-landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden—a first step towards quantification of vegetation openness in the past. Veget Hist Archaeobot 7:189–201

    Article  Google Scholar 

  • Broström A, Sugita S, Gaillard M-J, Pilesjö P (2005) Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden. Holocene 15:252–262

    Article  Google Scholar 

  • Bruun EH, Moen J, Angerbjörn A (2003) Environmental correlates of meso-scale plant species richness in the province of Härjedalen, Sweden. Biodivers Conserv 12:2,025–2,041

    Google Scholar 

  • Burnett MR, August PV, Brown JH Jr, Killingbeck KT (1998) The influence of geomorphological heterogeneity on biodiversity. I. A patch-scale perspective. Conserv Biol 12:363–370

    Article  Google Scholar 

  • Costanza JK, Moody A, Peet RK (2011) Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc Ecol 26:851–864

    Article  Google Scholar 

  • Duelli P (1997) Biodiversity evaluation in agricultural landscape: an approach at two different scales. Agric Ecosyst Environ 62:81–91

    Article  Google Scholar 

  • Erdtman G (1969) Handbook of palynology. An introduction to the study of pollen grains and spores. Munksgaard, Copenhagen

    Google Scholar 

  • Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda CM, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  Google Scholar 

  • Gaillard M-J, Birks HJB, Ihse M, Runborg S (1998) Pollen/landscape calibrations based on modern pollen assemblages from surface-sediment samples and landscape mapping—a pilot study in South Sweden. In: Gaillard M-J, Berglund BE, Frenzel B, Huckriede U (eds) Quantification of land surfaces cleared of forests during the holocene. Paläoklimaforschung/Palaeoclimate Research 27. Fischer, Stuttgart, pp 31–52

    Google Scholar 

  • Gaillard M-J, Sugita S, Bunting MJ, Middleton R, Broström A, Caseldine C, Giesecke T, Hellman SEV, Hicks S, Hjelle K, Langdon C, Nielsen A-B, Poska A, Von Stedingk H, Veski S, POLLANDCAL members (2008) The use of modelling and simulation approach in reconstructing past landscapes from fossil pollen data: a review and results from the POLLANDCAL network. Veget Hist Archaeobot 17:419–443

  • Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 1. Kluwer, Dordrecht, pp 73–105

    Chapter  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4

  • Hellman S, Gaillard MJ, Broström A, Sugita S (2008) The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. J Quat Sci 23:21–42

    Article  Google Scholar 

  • Hellman S, Bunting MJ, Gaillard M-J (2009) Relevant source area of pollen in patchy cultural landscapes and signals of anthropogenic landscape disturbance in the pollen record: a simulation approach. Rev Palaeobot Palynol 153:245–258

    Article  Google Scholar 

  • Honnay O, Piessens K, Landuyt W, Hermy M, Gulinck H (2003) Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landsc Urban Plan 63:241–250

    Article  Google Scholar 

  • Kukk T, Kull T (2005) Atlas of the Estonian flora. Institute of Agricultural and Environmental Sciences of the Estonian University of Life Sciences, Tartu

    Google Scholar 

  • Lundholm JT (2009) Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. J Veget Sci 20:377–392

    Article  Google Scholar 

  • MacDonald GM, Bennett KD, Jackson ST, Parducci L, Smith FA, Smol JP, Willis KJ (2008) Impacts of climate change on species, populations and communities: palaeobiogeographical insights and frontiers. Prog Phys Geogr 32:139–172

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Mazaris AD, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD (2010) Can we predict the number of plant species from the richness of a few common genera, families or orders? J Appl Ecol 47:662–670

    Article  Google Scholar 

  • McGarigal K (2002) Landscape pattern metrics. In: El-Shaarawi AH, Piegorsch WW (eds) Encyclopedia of environmetrics, vol 2. Wiley, Chichester, pp 1,135–1,142

  • Meltsov V, Poska A, Odgaard BV, Sammul M, Kull T (2011) Palynological richness and pollen sample evenness in relation to local floristic diversity in southern Estonia. Rev Palaeobot Palynol 166:344–351

    Article  Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, London

    Google Scholar 

  • Nichols W, Killingbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity. II. A landscape perspective. Conserv Biol 12:371–379

    Article  Google Scholar 

  • Nielsen AB, Odgaard BV (2005) Reconstructing land cover from pollen assemblages from small lakes in Denmark. Rev Palaeobot Palynol 133:1–21

    Article  Google Scholar 

  • Nielsen AB, Sugita S (2005) Estimating relevant source area of pollen for small Danish lakes around AD 1800. Holocene 15:1,006–1,020

    Google Scholar 

  • Nilsson G (2004) Oskarshamn site investigation. Investigation of sediments, peat lands and wetlands. Stratigraphical and analytical data, pp 11–12. http://www.skb.se/upload/publications/pdf/P-04-273webb.pdf. Viewed 14 Nov 2011

  • Odgaard BV (1999) Fossil pollen as a record of past biodiversity. J Biogeogr 26:7–17

    Article  Google Scholar 

  • Odgaard BV (2001) Palaeoecological perspectives on pattern and process in plant diversity and distribution adjustments: a comment on recent development. Divers Distrib 7:197–201

    Article  Google Scholar 

  • Öster M, Cousins SAO, Eriksson O (2007) Size and heterogeneity rather than landscape context determine plant species richness in semi-natural grasslands. J Veget Sci 18:859–868

    Article  Google Scholar 

  • Overland A, Hjelle KL (2009) From forest to open pastures and fields: cultural landscape development in western Norway inferred from two pollen records representing different spatial scales of vegetation. Veget Hist Archaeobot 18:459–476

    Article  Google Scholar 

  • Paal J (1997) Eesti taimkatte kasvukohatüüpide klassifikatsioon [Classification of Estonian vegetation site types]. Tartu Ülikooli Botaanika ja Ökoloogia Instituut, Estonian

    Google Scholar 

  • Pärt E, Adermann V, Lepiku P (2008) Forest resources. Yearbook forest 2008. http://www.envir.ee/1115717. Accessed 15 Oct 2010

  • Pärtel M, Zobel M, Zobel K, Van der Maarel E (1996) The species pool and its relation to species richness: evidence from Estonia plant communities. Oikos 75:111–117

    Article  Google Scholar 

  • Pärtel M, Helm A, Reitalu T, Liira J, Zobel M (2007) Grassland diversity related to the Late Iron Age human population density. J Ecol 95:574–582

    Article  Google Scholar 

  • Peros MC, Gajewski K (2008) Testing the reliability of pollen-based diversity estimates. J Paleolimnol 40:357–368

    Article  Google Scholar 

  • Poska A (2001) Human impact on vegetation of coastal Estonia during the Stone Age. Dissertation, Uppsala University

  • Poska A, Sepp E, Veski S, Koppel K (2008) Using quantitative pollen-based land-cover estimations and a spatial CA Markov model to reconstruct the development of cultural landscape at Rõuge, South Estonia. Veget Hist Archaeobot 17:527–541

    Article  Google Scholar 

  • Poska A, Meltsov V, Sugita S, Vassiljev J (2011) Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia). Rev Palaeobot Palynol 167:30–39

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-00051-07-0, http://www.R-project.org

  • Reitalu T, Sykes MT, Johansson LJ, Lönn M, Hall K, Vandewalle M, Prentice HC (2009) Small-scale plant species richness and evenness in semi-natural grasslands respond differently to habitat fragmentation. Biol Conserv 142:899–908

    Article  Google Scholar 

  • Reitalu T, Johansson LJ, Sykes MT, Hall K, Prentice HC (2010) History matters: village distances, grazing and grassland species diversity. J Appl Ecol 47:1,216–1,224

    Google Scholar 

  • Reitalu T, Purschke O, Johannson LJ, Hall K, Sykes MT, Prentice HC (2011) Responses of grassland species richness to local and landscape factors depend on spatial scale and habitat specialization. J Veget Sci. doi:10.1111/j.1654-1103.2011.01334

    Google Scholar 

  • Seppä H (1997) The long-term development of urban vegetation in Helsinki, Finland: a pollen diagram from Töölönlahti. Veget Hist Archaeobot 6:91–103

    Article  Google Scholar 

  • Seppä H (1998) Postglacial trends in palynological richness in the northern Fennoscandian tree-line area and their ecological interpretation. Holocene 8:43–53

    Article  Google Scholar 

  • Shmida A, Wilson MW (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Smith B, Wilson JB (1996) A consumer’s guide to evenness indices. Oikos 76:70–82

    Article  Google Scholar 

  • Söderström B, Svensson B, Vessby K, Glimskäri A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1,839–1,863

    Google Scholar 

  • Soepboer W, Sugita S, Lotter AF (2010) Regional vegetation-cover changes on the Swiss Plateau during the past two millennia: a pollen-based reconstruction using the REVEALS model. Quat Sci Rev 29:472–483

    Article  Google Scholar 

  • Statzner B, Moss B (2004) Linking ecological function, biodiversity and habitat: a mini-review focusing on older ecological literature. Basic Appl Ecol 5:97–106

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in quarternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S (2007a) Theory of quantitative reconstruction of vegetation. I. Pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241

    Article  Google Scholar 

  • Sugita S (2007b) Theory of quantitative reconstruction of vegetation. II. All you need is LOVE. Holocene 17:243–257

    Article  Google Scholar 

  • Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421

    Article  Google Scholar 

  • Van Dyke F (2008) Biodiversity: concept, measurement, and challenge. Conservation biology: foundations, concepts, applications, 2nd edn. Springer, Dordrecht

  • Veski S, Koppel K, Poska A (2005) Integrated palaeoecological and historical data in the service of fine-resolution land use and ecological change assessment during the last 1000 years in Rõuge, southern Estonia. J Biogeogr 32:1,473–1,488

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  Google Scholar 

  • Weibull A-C, Östman Ö, Granqvist Å (2003) Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers Conserv 12:1,335–1,355

    Google Scholar 

  • Weng C, Hooghiemstra H, Duivenvoorden JF (2006) Challenges in estimating past plant diversity from fossil pollen data: statistical assessment, problems, and possible solutions. Divers Distrib 12:310–318

    Article  Google Scholar 

Download references

Acknowledgments

We thank Karin Kaljund, Silja Kana, Kaili Kattai, Kaire Lanno and Merit Otsus (Estonian University of Life Sciences) for helping with the vegetation survey; Jüri Vassiljev (Tallinn University of Technology) for helping with the pollen sampling; Bent Vad Odgaard for instructive and inspiring discussions; Robert Szava-Kovats for correcting the English of the manuscript; two anonymous reviewers for helpful comments and suggestions; the Estonian Science Foundation (Grant ETF6995, SF0170052s08) for sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivika Meltsov.

Additional information

Communicated by M.-J. Gaillard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meltsov, V., Poska, A., Reitalu, T. et al. The role of landscape structure in determining palynological and floristic richness. Veget Hist Archaeobot 22, 39–49 (2013). https://doi.org/10.1007/s00334-012-0358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-012-0358-y

Keywords

Navigation