Skip to main content
Log in

An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A class of coupled cell–bulk ODE–PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius \(\epsilon \ll 1\) are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell–bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE–PDE cell–bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell–bulk models is shown to be qualitatively rather similar to the linear stability analysis of localized spot patterns for activator–inhibitor reaction–diffusion systems in the limit of long-range inhibition and short-range activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Busenberg, S.N., Mahaffy, J.M.: A compartmental reaction–diffusion cell cycle model. Comput. Math. Appl. 18(10–11), 883–892 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg, S.N., Mahaffy, J.M.: The effects of dimension and size for a compartmental model of repression. SIAM J. Appl. Math. 48(4), 882–903 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W., Ward, M.J.: The stability and dynamics of localized spot patterns in the two-dimensional Gray–Scott model. SIAM J. Appl. Dyn. Syst. 10(2), 582–666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Chiang, W.Y., Li, Y.X., Lai, P.Y.: Simple models for quorum sensing: nonlinear dynamical analysis. Phys. Rev. E. 84, 041921 (2011)

    Article  Google Scholar 

  • De Monte, S., d’Ovido, F., Dano, S., Sørensen, P.G.: Dynamical quorum sensing: population density encoded in cellular dynamics. Proc. Natl. Acad. Sci. 104(47), 18377–18381 (2007)

    Article  Google Scholar 

  • Ermentrout, G.B.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. SIAM 2002, Philadelphia, USA

  • Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Gomez-Marin, A., Garcia-Ojalvo, J., Sancho, J.M.: Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling. Phys. Rev. Lett. 98(16), 168303 (2007)

    Article  Google Scholar 

  • Gou, J., Li, Y.X., Nagata, W.: Interactions of in-phase and anti-phase synchronies in two cells coupled by a spatially diffusing chemical: double-hopf bifurcations, submitted. IMA J. Appl. Math. p. 23 (2015)

  • Gou, J., Ward, M.J.: Oscillatory dynamics for a coupled membrane-bulk diffusion model with Fitzhugh-Nagumo kinetics. SIAM J. Appl. Math. p. 23 (2015)

  • Gou, J., Li, Y.X., Nagata, W., Ward, M.J.: Synchronized oscillatory dynamics for a 1-D model of membrane kinetics coupled by linear bulk diffusion. SIAM J. Appl. Dyn. Syst. 14(4), 2096–2137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Gou, J., Chiang, W.Y., Lai, P.Y., Ward, M.J., Li, Y.X.: A theory of synchrony by coupling through a diffusive chemical signal. Submitted. Phys. D p. 28 (2016)

  • Gregor, T., Fujimoto, K., Masaki, N., Sawai, S.: The onset of collective behavior in social amoeba. Science 328(5981), 1021–1025 (2010)

    Article  Google Scholar 

  • Krsmanovic, L.Z., Mores, N., Navarro, C.E., Arora, K.K., Catt, K.J.: An agonist-induced switch in g protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile neuropeptide secretion. Proc. Natl. Acad. Sci. USA 100(5), 2969–2974 (2003)

    Article  Google Scholar 

  • Kropinski, M.C., Quaife, B.D.: Fast integral equation methods for the modified Helmholtz equation. J. Comput. Phys. 230(2), 425–434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kurella, V., Tzou, J., Coombs, D., Ward, M.J.: Asymptotic analysis of first passage time problems inspired by ecology. Bull. Math Biol. 77(1), 83–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Levy, C., Iron, D.: Dynamics and stability of a three-dimensional model of cell signal transduction. J. Math. Biol. 67(6), 1691–1728 (2014)

    MathSciNet  MATH  Google Scholar 

  • Levy, C., Iron, D.: Dynamics and stability of a three-dimensional model of cell signal transduction with delay. Nonlinearity 28(7), 2515–2553 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.X., Khadra, A.: Robust synchrony and rhythmogenesis in endocrine neurons via autocrine regulations in vitro and in vivo. Bull. Math. Biol. 70(8), 2103–2125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, J., Kuttler, C., Hense, B.A., Rothballer, M., Hartmann, A.: Cell-cell communication by quorum sensing and dimension-reduction. J. Math. Biol. 53, 672–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, J., Uecker, H.: Approximating the dynamics of communicating cells in a diffusive medium by ODEs: homogenization with localization. J. Math. Biol. 67, 1023–1065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Naqib, F., Quail, T., Musa, L., Vulpe, H., Nadeau, J., Lei, J., Glass, L.: Tunable oscillations and chaotic dynamics in systems with localized synthesis. Phys. Rev. E 85, 046210 (2012)

    Article  Google Scholar 

  • Nanjundiah, V.: Cyclic AMP oscillations in Dictyostelium discoideum: models and observations. Biophys. Chem. 72(1–2), 1–8 (1998)

    Article  Google Scholar 

  • Noorbakhsh, J., Schwab, D., Sgro, A., Gregor, T., Mehta, P.: Modeling oscillations and spiral waves in Dictyostelium populations. Phys. Rev. E 91, 062711 (2015)

    Article  Google Scholar 

  • Novak, B., Tyson, J.J.: Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9(12), 981–991 (2008)

    Article  Google Scholar 

  • Peirce, A.P., Rabitz, H.: Effect of defect structures on chemically active surfaces: a continuum approach. Phys. Rev. B. 38(3), 1734–1753 (1998)

    Article  Google Scholar 

  • Pillay, S., Ward, M.J., Pierce, A., Kolokolnikov, T.: An asymptotic analysis of the mean first passage time for narrow escape problems: part I: two-dimensional domains. SIAM Multiscale Model. Simul. 8(3), 803–835 (2010)

    Article  MATH  Google Scholar 

  • Rauch, E.M., Millonas, M.: The role of trans-membrane signal transduction in Turing-type cellular pattern formation. J. Theor. Biol. 226, 401–407 (2004)

    Article  MathSciNet  Google Scholar 

  • Riecke, H., Kramer, L.: Surface-induced chemical oscillations and their influence on space- and time-periodic patterns. J. Chem. Phys. 83, 3941 (1985)

    Article  MathSciNet  Google Scholar 

  • Rozada, I., Ruuth, S., Ward, M.J.: The stability of localized spot patterns for the Brusselator on the sphere. SIAM J. Appl. Dyn. Syst. 13(1), 564–627 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwab, D.J., Baetica, A., Mehta, P.: Dynamical quorum-sensing in oscillators coupled through an external medium. Phys. D 241(21), 1782–1788 (2012)

    Article  MATH  Google Scholar 

  • Taylor, A.F., Tinsley, M., Wang, F., Huang, Z., Showalter, K.: Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323(5914), 6014–617 (2009)

    Article  Google Scholar 

  • Taylor, A.F., Tinsley, M., Showalter, K.: Insights into collective cell behavior from populations of coupled chemical oscillators. Phys. Chem. Chem. Phys. 17(31), 20047–20055 (2015)

    Article  Google Scholar 

  • Tinsley, M.R., Taylor, A.F., Huang, Z., Wang, F., Showalter, K.: Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles. Phys. D 239(11), 785–790 (2010)

    Article  Google Scholar 

  • Tinsley, M.R., Taylor, A.F., Huang, Z., Showalter, K.: Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing. Phys. Rev. Lett. 102, 158301 (2009)

    Article  Google Scholar 

  • Ward, M.J.: Asymptotics for strong localized perturbations: theory and applications. Online lecture notes for fourth winter school on applied mathematics, CityU of Hong Kong, p. 100 (2010)

  • Wei, J., Winter, M.: Spikes for the two-dimensional Gierer–Meinhardt system: the weak coupling case. J. Nonlinear Sci. 11(6), 415–458 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, J., Winter, M.: Stationary multiple spots for reaction–diffusion systems. J. Math. Biol. 57(1), 53–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

M. J. Ward was supported by NSERC (Canada). We are grateful to Prof. B. Ermentrout (U. Pittsburgh), Prof. T. Erneux (U. Brussels), Prof. L. Glass (McGill), and Prof. J. Mahaffy (San Diego State), for helpful discussions on cell–bulk dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ward.

Additional information

Communicated by Philip K. Maini.

Appendix: Non-Dimensionalization of the Coupled Cell–Bulk System

Appendix: Non-Dimensionalization of the Coupled Cell–Bulk System

In this appendix we non-dimensionalize (1.1) into the dimensionless form (1.2). If we let \(\left[ \gamma \right] \) denote the dimensions of the variable \(\gamma \), then the dimensions of the various quantities in (1.1) are as follows:

$$\begin{aligned} \begin{aligned} \left[ {\mathcal {U}}\right]&= \frac{\text{ moles }}{\text{(length) }^2} \,, \qquad \left[ \varvec{\mu }_j\right] = \text{ moles } \,, \qquad \left[ \mu _c \right] = \text{ moles } \,, \qquad \left[ D_B \right] =\frac{\text{(length) }^2}{\text{ time }} \,, \qquad \\ \left[ k_B \right]&=\left[ k_R\right] = \frac{1}{\text{ time }} \,, \qquad \left[ \beta _1 \right] =\frac{\text{ length }}{\text{ time }} \,, \qquad \ \left[ \beta _2 \right] =\frac{1}{\text{ length }\times \text{ time }} \,. \end{aligned} \end{aligned}$$
(8.1)

We now non-dimensionalize (1.1) by introducing the dimensionless variables t, \(\varvec{x}\), U, \(\varvec{u}\), and D, defined by

$$\begin{aligned} t = k_R T \,, \qquad \varvec{x} = {\varvec{X}/L} \,, \qquad U= \frac{L^2}{\mu _c} {\mathcal {U}} \,, \qquad \varvec{u}_j = \frac{\varvec{\mu }_j}{\mu _c} \,, \qquad D \equiv \frac{D_B}{k_B L^2} \,, \end{aligned}$$
(8.2)

where L is a typical radius of \(\Omega \). In terms of these variables, (1.1) becomes

$$\begin{aligned} \begin{aligned} \frac{k_R}{k_B} { U}_t&= D \Delta _{\varvec{x}} {U} - {U}\,, \qquad \varvec{x} \in \tilde{\Omega }\backslash \cup _{j=1}^m\Omega _{\epsilon _j}\,; \qquad \partial _{n_{\varvec{x}}} {U}= 0\,,\qquad \varvec{x} \in \partial \tilde{\Omega }\,,\\ D \partial _{n_{\varvec{x}}} {U}&= \frac{\beta _1}{k_B L} { U} - \frac{\beta _2 L}{k_B} u_j^1 \,, \;\;\quad \varvec{x}\in \partial \Omega _{\epsilon _j}\,, \\ \end{aligned} \end{aligned}$$
(8.3a)

which is coupled to the intracellular dynamics for each \(j=1,\ldots ,m\) by

$$\begin{aligned} \frac{\hbox {d} \varvec{u}_j}{\hbox {d}t} = \varvec{F}_j\left( \varvec{u}_j\right) + \frac{k_B\varvec{e}_1}{k_R} \int _{\partial \Omega _{\epsilon _j}} \left( \frac{\beta _1}{k_B L} {U} - \frac{\beta _2 L}{k_B} u_j^1\right) \, dS_{\varvec{x}} \,. \end{aligned}$$
(8.3b)

For each j, \(\Omega _{\epsilon _j}\) is a disk centered at some \(\varvec{x}_j\) of a common radius \({\sigma /L}\). In our non-dimensionalization the timescale is chosen based on the timescale of the reaction kinetics, and D is an effective dimensionless diffusivity. In this way, and upon dropping the tilde variables, we obtain the dimensionless problem (1.2) with dimensionless parameters as in (1.3). We remark that, upon using the divergence theorem, we can readily establish from (8.3) that

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}t} \left( \int _{\tilde{\Omega }\backslash \cup _{j=1}^m\Omega _{\epsilon _j}} U \, \hbox {d}\varvec{x} + \sum _{j=1}^{m} \varvec{e}^T \varvec{u}_j \right) = -\frac{k_B}{k_R}\int _{\tilde{\Omega }\backslash \cup _{j=1}^m\Omega _{\epsilon _j}} U \, \hbox {d}\varvec{x} + \sum _{j=1}^{m} \varvec{e}^T \varvec{F}_j(\varvec{u}_j) \,, \end{aligned}$$
(8.4)

where \(\varvec{e} \equiv (1,\ldots ,1)^T\). The left-hand side of this expression is the total amount of material inside the cells and in the bulk, while the right-hand side characterizes the bulk degradation and production within the cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gou, J., Ward, M.J. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion. J Nonlinear Sci 26, 979–1029 (2016). https://doi.org/10.1007/s00332-016-9296-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-016-9296-7

Keywords

Mathematics Subject Classification

Navigation