Skip to main content
Log in

Validity of Whitham’s Equations for the Modulation of Periodic Traveling Waves in the NLS Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We prove that slow modulations in time and space of periodic wave trains of the NLS equation can be approximated via solutions of Whitham’s equations associated with the wave train. The error estimates are based on a suitable choice of polar coordinates, a Cauchy–Kowalevskaya-like existence and uniqueness theorem, and energy estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bridges, T., Mielke, A.: A proof of the Benjamin–Feir instability. Arch. Ration Mech. Anal. 133(2), 145–198 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Busch, K., Schneider, G., Tkeshelashvili, L., Uecker, H.: Justification of the nonlinear Schrödinger equation in spatially periodic media. Z. Angew. Math. Phys. 57(6), 905–939 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Cercignani, C., Sattinger, D.H.: Scaling Limits and Models in Physical Processes. DMV Seminar, vol. 28. Birkhäuser, Basel (1998), vi+191 pp.

    MATH  Google Scholar 

  • Collet, P., Eckmann, J.-P.: The time dependent amplitude equation for the Swift–Hohenberg problem. Commun. Math. Phys. 132(1), 139–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits. Commun. Part. Differ. Equ. 10, 787–1003 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Doelman, A., Sandstede, B., Scheel, A., Schneider, G.: The dynamics of modulated wave trains. AMS Mem. (2006, accepted)

  • Dreyer, W., Herrmann, M., Mielke, A.: Micro-macro transition in the atomic chain via Whitham’s modulation equation. Nonlinearity 19(2), 471–500 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalyakin, L.A.: Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium. Math. USSR Sb. Surv. 60(2), 457–483 (1988)

    Article  MathSciNet  Google Scholar 

  • Kamvissis, S., McLaughlin, K.D.T.-R., Miller, P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematics Studies, vol. 154. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  • Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. Spectral theory and differential equations. In: Proc. Symp. Dedicated to Konrad Jörgens, Dundee, 1974. Lecture Notes in Math., vol. 448, pp. 25–70. Springer, Berlin (1975)

    Google Scholar 

  • Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Melbourne, I., Schneider, G.: Phase dynamics in the complex Ginzburg–Landau equation. J. Differ. Equ. 199(1), 22–46 (2004a)

    Article  MathSciNet  MATH  Google Scholar 

  • Melbourne, I., Schneider, G.: Phase dynamics in the real Ginzburg–Landau equation. Math. Nachr. 263/264 171–180 (2004b)

    Article  MathSciNet  Google Scholar 

  • Mielke, A.: Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner–Husumi transforms. Arch. Ration. Mech. Anal. 181, 401–448 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Ovsjannikov, L.V.: Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification. In: Lecture Notes in Mathematics, vol. 503, pp. 416–437. Springer, Berlin (1976)

    Google Scholar 

  • Schneider, G.: A new estimate for the Ginzburg–Landau approximation on the real axis. J. Nonlinear Sci. 4(1), 23–34 (1994a)

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider, G.: Error estimates for the Ginzburg–Landau approximation. Z. Angew. Math. Phys. 45(3), 433–457 (1994b)

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider, G.: Justification of modulation equations for hyperbolic systems via normal forms. Nonlinear Differ. Equ. Appl. (NODEA) 5, 69–82 (1998)

    Article  MATH  Google Scholar 

  • Schneider, G.: Justification and failure of the nonlinear Schrödinger equation in case of non-trivial quadratic resonances. J. Differ. Equ. 216(2), 354–386 (2005)

    Article  MATH  Google Scholar 

  • Schneider, G., Wayne, C.E.: The long wave limit for the water wave problem. I. The case of zero surface tension. Commun. Pure Appl. Math. 53(12), 1475–1535 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Schneider, G., Wayne, C.E.: The rigorous approximation of long-wavelength capillary-gravity waves. Arch. Ration Mech. Anal. 162, 247–285 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Serre, D.: Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge (1999). xxii+263 pp. (Translated from the 1996 French original by I.N. Sneddon)

    Google Scholar 

  • Serre, D.: Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-Boundary Value Problems. Cambridge University Press, Cambridge (2000). xii+269 pp. (Translated from the 1996 French original by I.N. Sneddon)

    MATH  Google Scholar 

  • van Harten, A.: On the validity of the Ginzburg–Landau equation. J. Nonlinear Sci. 1(4), 397–422 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Whitham, G.B.: A general approach to linear and non-linear dispersive waves using a Lagrangian. J. Fluid Mech. 22, 273–283 (1965a)

    Article  MathSciNet  Google Scholar 

  • Whitham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Ser. A 283, 238–261 (1965b)

    Article  MathSciNet  MATH  Google Scholar 

  • Whitham, G.B.: Linear and Nonlinear Waves. Pure and Applied Mathematics. Wiley, New York (1999). Reprint of the 1974 Original

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Patrick Düll.

Additional information

Communicated by J. Scheurle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düll, WP., Schneider, G. Validity of Whitham’s Equations for the Modulation of Periodic Traveling Waves in the NLS Equation. J Nonlinear Sci 19, 453–466 (2009). https://doi.org/10.1007/s00332-009-9043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-009-9043-4

Keywords

Mathematics Subject Classification (2000)

Navigation