Skip to main content
Log in

Highly accelerated 3D MPRAGE using deep neural network–based reconstruction for brain imaging in children and young adults

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to accelerate the 3D magnetization–prepared rapid gradient-echo (MPRAGE) sequence for brain imaging through the deep neural network (DNN).

Methods

This retrospective study used the k-space data of 240 scans (160 for the training set, mean ± standard deviation age, 93 ± 80 months, 94 males; 80 for the test set, 106 ± 83 months, 44 males) of conventional MPRAGE (C-MPRAGE) and 102 scans (77 ± 74 months, 52 males) of both C-MPRAGE and accelerated MPRAGE. All scans were acquired with 3T scanners. DNN was developed with simulated-acceleration data generated by under-sampling. Quantitative error metrics were compared between images reconstructed with DNN, GRAPPA, and E-SPIRIT using the paired t-test. Qualitative image quality was compared between C-MPRAGE and accelerated MPRAGE reconstructed with DNN (DNN-MPRAGE) by two readers. Lesions were segmented and the agreement between C-MPRAGE and DNN-MPRAGE was assessed using linear regression.

Results

Accelerated MPRAGE reduced scan times by 38% compared to C-MPRAGE (142 s vs. 320 s). For quantitative error metrics, DNN showed better performance than GRAPPA and E-SPIRIT (p < 0.001). For qualitative evaluation, overall image quality of DNN-MPRAGE was comparable (p > 0.999) or better (p = 0.025) than C-MPRAGE, depending on the reader. Pixelation was reduced in DNN-MPRAGE (p < 0.001). Other qualitative parameters were comparable (p > 0.05). Lesions in C-MPRAGE and DNN-MPRAGE showed good agreement for the dice similarity coefficient (= 0.68) and linear regression (R2 = 0.97; p < 0.001).

Conclusions

DNN-MPRAGE reduced acquisition time by 38% and revealed comparable image quality to C-MPRAGE.

Key Points

• DNN-MPRAGE reduced acquisition times by 38%.

• DNN-MPRAGE outperformed conventional reconstruction on accelerated scans (SSIM of DNN-MPRAGE = 0.96, GRAPPA = 0.43, E-SPIRIT = 0.88; p < 0.001).

• Compared to C-MPRAGE scans, DNN-MPRAGE showed improved mean scores for overall image quality (2.46 vs. 2.52; p < 0.001) or comparable perceived SNR (2.56 vs. 2.58; p = 0.08).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ACS:

Autocalibrating signal

C-MPRAGE:

Conventional image reconstruction of magnetization-prepared rapid gradient-echo images from conventional scans

CNR:

Contrast-to-noise ratio

CS:

Compressed sensing

DNN:

Deep neural network

DNN-MPRAGE:

Deep neural network–based reconstruction of magnetization-prepared rapid gradient-echo images from accelerated scans

DSC:

Dice similarity coefficient

E-SPIRIT:

An eigenvalue approach to iterative self-consistent parallel imaging reconstruction

GRAPPA:

Generalized autocalibrating partially parallel acquisitions

GW:

Gray-white matter

MPRAGE:

Magnetization-prepared rapid gradient-echo

MRI:

Magnetic resonance imaging

NRMSE:

Normalized mean square errors

PSNR:

Peak signal-to-noise ratio

R :

Acceleration (or reduction) factor

RSS:

Root sum of squares

SENSE:

Sensitivity encoding

SNR:

Signal-to-noise ratio

SSIM:

Structural similarity index

WAVE-CAIPI:

Wave-controlled aliasing in parallel imaging

References

  1. Casey BJ, Giedd JN, Thomas KM (2000) Structural and functional brain development and its relation to cognitive development. Biol Psychol 54:241–257. https://doi.org/10.1016/s0301-0511(00)00058-2

    Article  CAS  PubMed  Google Scholar 

  2. Giedd JN, Rapoport JL (2010) Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67:728–734. https://doi.org/10.1016/j.neuron.2010.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim HG, Moon W-J, Han J, Choi JW (2017) Quantification of myelin in children using multiparametric quantitative MRI: a pilot study. Neuroradiology 59:1043–1051. https://doi.org/10.1007/s00234-017-1889-9

    Article  PubMed  Google Scholar 

  4. Kim HG, Choi JW, Han M et al (2020) Texture analysis of deep medullary veins on susceptibility-weighted imaging in infants: evaluating developmental and ischemic changes. Eur Radiol 30:2594–2603. https://doi.org/10.1007/s00330-019-06618-6

    Article  PubMed  Google Scholar 

  5. Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157. https://doi.org/10.1002/mrm.1910150117

    Article  PubMed  Google Scholar 

  6. Brant-Zawadzki M, Gillan GD, Nitz WR (1992) MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence--initial experience in the brain. Radiology 182:769–775. https://doi.org/10.1148/radiology.182.3.1535892

    Article  CAS  PubMed  Google Scholar 

  7. Mugler JP, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1:561–567. https://doi.org/10.1002/jmri.1880010509

    Article  PubMed  Google Scholar 

  8. Blumenthal JD, Zijdenbos A, Molloy E, Giedd JN (2002) Motion artifact in magnetic resonance imaging: implications for automated analysis. Neuroimage 16:89–92. https://doi.org/10.1006/nimg.2002.1076

    Article  PubMed  Google Scholar 

  9. Slovis TL (2011) Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 41:514. https://doi.org/10.1007/s00247-011-2115-2

    Article  PubMed  Google Scholar 

  10. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210. https://doi.org/10.1002/mrm.10171

    Article  PubMed  Google Scholar 

  11. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

  12. Uecker M, Lai P, Murphy MJ et al (2014) ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn Reson Med 71:990–1001. https://doi.org/10.1002/mrm.24751

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nana R, Zhao T, Heberlein K et al (2008) Cross-validation-based kernel support selection for improved GRAPPA reconstruction. Magn Reson Med 59:819–825. https://doi.org/10.1002/mrm.21535

    Article  PubMed  Google Scholar 

  14. Lustig M, Pauly JM (2010) SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 64:457–471. https://doi.org/10.1002/mrm.22428

    Article  PubMed  PubMed Central  Google Scholar 

  15. Crémillieux Y, Briguet A, Deguin A (1994) Projection-reconstruction methods: fast imaging sequences and data processing. Magn Reson Med 32:23–32. https://doi.org/10.1002/mrm.1910320105

    Article  PubMed  Google Scholar 

  16. Bilgic B, Gagoski BA, Cauley SF et al (2014) Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med 73:2152–2162. https://doi.org/10.1002/mrm.25347

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Signal Process Mag 25:72–82. https://doi.org/10.1109/msp.2007.914728

    Article  Google Scholar 

  18. Cheng JY, Mardani M, Alley MT et al (2018) DeepSPIRiT: generalized parallel imaging using deep convolutional neural networks. In: Proceedings of the 26th Annual Meeting of ISMRM. Paris, France, p 0570. https://cds.ismrm.org/protected/18MPresentations/abstracts/0570.html

  19. Sriram A, Zbontar J, Murrell T, et al (2020) End-to-end variational networks for accelerated MRI reconstruction. arXiv Prepr arXiv:200406688

  20. Sriram A, Zbontar J, Murrell T, et al (2020) GrappaNet: combining parallel imaging with deep learning for multi-coil MRI reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 14315–14322. https://openaccess.thecvf.com/content_CVPR_2020/html/Sriram_GrappaNet_Combining_Parallel_Imaging_With_Deep_Learning_for_Multi-Coil_MRI_CVPR_2020_paper.html

  21. Eo T, Jun Y, Kim T et al (2018) KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med 80:2188–2201. https://doi.org/10.1002/mrm.27201

    Article  CAS  PubMed  Google Scholar 

  22. Hammernik K, Klatzer T, Kobler E et al (2017) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79:3055–3071. https://doi.org/10.1002/mrm.26977

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aggarwal HK, Mani MP, Jacob M (2019) MoDL: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 38:394–405. https://doi.org/10.1109/tmi.2018.2865356

    Article  PubMed  Google Scholar 

  24. Muckley MJ, Riemenschneider B, Radmanesh A et al (2021) Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans Med Imaging 40:2306–2317. https://doi.org/10.1109/tmi.2021.3075856

    Article  PubMed  PubMed Central  Google Scholar 

  25. Akçakaya M, Moeller S, Weingärtner S, Uğurbil K (2019) Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn Reson Med 81:439–453. https://doi.org/10.1002/mrm.27420

    Article  CAS  PubMed  Google Scholar 

  26. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 580–587. https://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html

  27. He L, Wang J, Lu Z-L et al (2018) Optimization of magnetization-prepared rapid gradient echo (MP-RAGE) sequence for neonatal brain MRI. Pediatr Radiol 48:1139–1151. https://doi.org/10.1007/s00247-018-4140-x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/tip.2003.819861

    Article  PubMed  Google Scholar 

  29. Acharya UR, Anand D, Bhat PS, Niranjan UC (2001) Compact storage of medical images with patient information. IEEE Trans Inf Technol Biomed 5:320. https://doi.org/10.1109/4233.966107

    Article  CAS  PubMed  Google Scholar 

  30. Almohammad A, Ghinea G (2010) Stego image quality and the reliability of PSNR. In: 2010 2nd International Conference on Image Processing Theory, Tools and Applications. pp 215–220. https://doi.org/10.1109/IPTA.2010.5586786

  31. Fenster A, Chiu B (2005) Evaluation of segmentation algorithms for medical imaging. In: Conf Proc IEEE Eng Med Biol Soc. Shanghai, pp 7186–7189. https://doi.org/10.1109/IEMBS.2005.1616166

  32. Kozak BM, Jaimes C, Kirsch J, Gee MS (2020) MRI techniques to decrease imaging times in children. Radiographics 40:485–502. https://doi.org/10.1148/rg.2020190112

    Article  PubMed  Google Scholar 

  33. Ji S, Jeong J, Oh S-H et al (2021) Quad-contrast imaging: simultaneous acquisition of four contrast-weighted images (PD-weighted, T2-weighted, PD-FLAIR and T2-FLAIR images) with synthetic T1-weighted image, T1-and T2-maps. IEEE Trans Med Imaging 40:3617–3626. https://doi.org/10.1109/tmi.2021.3093617

    Article  PubMed  Google Scholar 

  34. Kim KH, Choi SH, Park S-H (2018) Improving arterial spin labeling by using deep learning. Radiology 287:658–666. https://doi.org/10.1148/radiol.2017171154

    Article  PubMed  Google Scholar 

  35. Fujita S, Hagiwara A, Otsuka Y et al (2020) Deep learning approach for generating MRA images from 3D quantitative synthetic MRI without additional scans. Invest Radiol 55:249–256. https://doi.org/10.1097/rli.0000000000000628

    Article  PubMed  Google Scholar 

  36. Williams L-A, DeVito TJ, Winter JD et al (2007) Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0 T. Magn Reson Imaging 25:1162–1170. https://doi.org/10.1016/j.mri.2007.01.119

    Article  PubMed  Google Scholar 

  37. Kaye EA, Aherne EA, Duzgol C et al (2020) Accelerating prostate diffusion-weighted MRI using a guided denoising convolutional neural network: retrospective feasibility study. Radiology Artif Intell 2:e200007. https://doi.org/10.1148/ryai.2020200007

    Article  Google Scholar 

  38. Koonjoo N, Zhu B, Bagnall GC et al (2021) Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Sci Rep 11:8248. https://doi.org/10.1038/s41598-021-87482-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montejo C, Laredo C, Llull L et al (2021) Synthetic MRI in subarachnoid haemorrhage. Clin Radiol 76:785.e17–785.e23. https://doi.org/10.1016/j.crad.2021.05.021

    Article  CAS  Google Scholar 

  40. Fujita S, Yokoyama K, Hagiwara A et al (2021) 3D quantitative synthetic MRI in the evaluation of multiple sclerosis lesions. AJNR Am J Neuroradiol 42:471–478. https://doi.org/10.3174/ajnr.a6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kellman P, McVeigh ER (2005) Image reconstruction in SNR units: a general method for SNR measurement†. Magn Reson Med 54:1439–1447. https://doi.org/10.1002/mrm.20713

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tukey JW (1967) An introduction to the calculations of numerical spectrum analysis. Spectra Analysis of Time Series 25–46. https://ci.nii.ac.jp/naid/10011111666/#cit

  43. Keil B, Alagappan V, Mareyam A et al (2011) Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 66:1777–1787. https://doi.org/10.1002/mrm.22961

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim M, Kim HS, Kim HJ et al (2021) Thin-slice pituitary MRI with deep learning–based reconstruction: diagnostic performance in a postoperative setting. Radiology 298:114–122. https://doi.org/10.1148/radiol.2020200723

    Article  PubMed  Google Scholar 

  45. Herrmann J, Gassenmaier S, Nickel D et al (2020) Diagnostic confidence and feasibility of a deep learning accelerated HASTE sequence of the abdomen in a single breath-hold. Invest Radiol 56:313–319. https://doi.org/10.1097/rli.0000000000000743

    Article  Google Scholar 

  46. Kidoh M, Shinoda K, Kitajima M et al (2020) Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci 19:195–206. https://doi.org/10.2463/mrms.mp.2019-0018

    Article  PubMed  Google Scholar 

  47. Gassenmaier S, Afat S, Nickel MD et al (2021) Accelerated T2-weighted TSE imaging of the prostate using deep learning image reconstruction: a prospective comparison with standard T2-weighted TSE imaging. Cancers 13:3593. https://doi.org/10.3390/cancers13143593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ueda T, Ohno Y, Yamamoto K et al (2021) Compressed sensing and deep learning reconstruction for women’s pelvic MRI denoising: utility for improving image quality and examination time in routine clinical practice. Eur J Radiol 134:109430. https://doi.org/10.1016/j.ejrad.2020.109430

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Korea Medical Device Development Fund grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: KMDF_PR_20200901_0062, 9991006735) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (Project Number: NRF-2021R1A2C1007831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Gi Kim.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Hyun Gi Kim.

Conflict of interest

Three of the authors of this manuscript declare relationships with AIRS Medical Inc.

Woojin Jung, Jingyu Ko, and Geunu Jeong are employees of AIRS Medical.

The other authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and Biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was waived by the Institutional Review Board.

Ethics approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Cross-sectional study

• Performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 3023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, W., Kim, J., Ko, J. et al. Highly accelerated 3D MPRAGE using deep neural network–based reconstruction for brain imaging in children and young adults. Eur Radiol 32, 5468–5479 (2022). https://doi.org/10.1007/s00330-022-08687-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-08687-6

Keywords

Navigation