Skip to main content

Advertisement

Log in

Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V)

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the image quality of brain computed tomography (CT) images reconstructed with deep learning–based image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V).

Methods

Sixty-two patients underwent routine noncontrast brain CT scans and datasets were reconstructed with 30% ASIR-V and DLIR with three selectable reconstruction strength levels (low, medium, high). Objective parameters including CT attenuation, noise, noise reduction rate, artifact index of the posterior cranial fossa, and contrast-to-noise ratio (CNR) were measured at the levels of the centrum semiovale and basal ganglia. Subjective parameters including gray matter-white matter differentiation, sharpness, and overall diagnostic quality were also assessed and compared with the interobserver agreement.

Results

There was a gradual reduction in the image noise and artifact index of the posterior cranial fossa as the strength levels of DLIR increased (all P < 0.001) compared with that of ASIR-V. CNR in both the centrum semiovale and basal ganglia levels also improved from the low to high strength levels of DLIR compared with that of ASIR-V (all P < 0.001). DLIR images with medium and high strength levels demonstrated the best subjective image quality scores among the reconstruction datasets. There was moderate to good interobserver agreement for the subjective image quality assessments with ASIR-V and DLIR.

Conclusion

On routine brain CT scans, optimized protocols with DLIR allowed significant reduction of noise and artifacts with improved subjective image quality compared with ASIR-V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet (London, England) 355(9216):1670–1674. https://doi.org/10.1016/s0140-6736(00)02237-6

    Article  CAS  Google Scholar 

  2. Hill MD, Demchuk AM, Tomsick TA, Palesch YY, Broderick JP (2006) Using the baseline CT scan to select acute stroke patients for IV-IA therapy. AJNR Am J Neuroradiol 27(8):1612–1616

    CAS  PubMed  Google Scholar 

  3. Heuscher DJ, Vembar M (1999) Reduced partial volume artifacts using spiral computed tomography and an integrating interpolator. Med Phys 26(2):276–286. https://doi.org/10.1118/1.598523

    Article  CAS  PubMed  Google Scholar 

  4. Jones TR, Kaplan RT, Lane B, Atlas SW, Rubin GD (2001) Single- versus multi-detector row CT of the brain: quality assessment. Radiology 219(3):750–755. https://doi.org/10.1148/radiology.219.3.r01jn47750

    Article  CAS  PubMed  Google Scholar 

  5. Pelt DM, Batenburg KJ (2014) Improving filtered backprojection reconstruction by data-dependent filtering. IEEE Trans Image Process 23(11):4750–4762. https://doi.org/10.1109/TIP.2014.2341971

    Article  PubMed  Google Scholar 

  6. Cho HH, Lee SM, You SK (2020) Pediatric head computed tomography with advanced modeled iterative reconstruction: focus on image quality and reduction of radiation dose. Pediatr Radiol 50(2):242–251. https://doi.org/10.1007/s00247-019-04532-z

    Article  PubMed  Google Scholar 

  7. Liu X, Chen L, Qi W, Jiang Y, Liu Y, Zhang M, Hong N (2017) Thin-slice brain CT with iterative model reconstruction algorithm for small lacunar lesions detection: image quality and diagnostic accuracy evaluation. Medicine 96(51):e9412. https://doi.org/10.1097/MD.0000000000009412

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hardie AD, Nelson RM, Egbert R, Rieter WJ, Tipnis SV (2015) What is the preferred strength setting of the sinogram-affirmed iterative reconstruction algorithm in abdominal CT imaging? Radiol Phys Technol 8(1):60–63. https://doi.org/10.1007/s12194-014-0288-8

    Article  PubMed  Google Scholar 

  9. Geyer LL, Schoepf UJ, Meinel FG, Nance JW Jr, Bastarrika G, Leipsic JA, Paul NS, Rengo M, Laghi A, De Cecco CN (2015) State of the art: iterative CT reconstruction techniques. Radiology 276(2):339–357. https://doi.org/10.1148/radiol.2015132766

    Article  PubMed  Google Scholar 

  10. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A (2017) Deep learning: a primer for radiologists. Radiographics 37(7):2113–2131. https://doi.org/10.1148/rg.2017170077

    Article  PubMed  Google Scholar 

  11. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  12. Benz DC, Benetos G, Rampidis G, von Felten E, Bakula A, Sustar A, Kudura K, Messerli M, Fuchs TA, Gebhard C, Pazhenkottil AP, Kaufmann PA, Buechel RR (2020) Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy. J Cardiovasc Comput Tomogr 14:444–451. https://doi.org/10.1016/j.jcct.2020.01.002

    Article  PubMed  Google Scholar 

  13. Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, Frandon J (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 30:3951–3959. https://doi.org/10.1007/s00330-020-06724-w

    Article  PubMed  Google Scholar 

  14. Osborn AG, Hedlund GL, Salzman KL (2017) Osborn’s brain. In: Dementias and brain degeneration, 2nd edn. Elsevier, Philadelphia, pp 1072–1074

    Google Scholar 

  15. Pomerantz SR, Kamalian S, Zhang D, Gupta R, Rapalino O, Sahani DV, Lev MH (2013) Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65-75 keV maximizes image quality compared with conventional polychromatic CT. Radiology 266(1):318–325. https://doi.org/10.1148/radiol.12111604

    Article  PubMed  Google Scholar 

  16. Riordan AJ, Bennink E, Viergever MA, Velthuis BK, Dankbaar JW, de Jong HW (2013) CT brain perfusion protocol to eliminate the need for selecting a venous output function. AJNR Am J Neuroradiol 34(7):1353–1358. https://doi.org/10.3174/ajnr.A3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldman LW (2007) Principles of CT: radiation dose and image quality. J Nuclear Med Technol 35(4):213–225; quiz 226-218. https://doi.org/10.2967/jnmt.106.037846

    Article  Google Scholar 

  18. Rozeik C, Kotterer O, Preiss J, Schutz M, Dingler W, Deininger HK (1991) Cranial CT artifacts and gantry angulation. J Comput Assist Tomogr 15(3):381–386. https://doi.org/10.1097/00004728-199105000-00007

    Article  CAS  PubMed  Google Scholar 

  19. Kilic K, Erbas G, Guryildirim M, Arac M, Ilgit E, Coskun B (2011) Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol 32(9):1578–1582. https://doi.org/10.3174/ajnr.A2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsieh J, Liu E, Nett B, Tang J, Thibault J-B, Sahney S (2019) A new era of image reconstruction: TrueFidelity™. White Paper (JB68676XX), GE Healthcare

  21. Wu D, Kim K, Li Q (2019) Computationally efficient deep neural network for computed tomography image reconstruction. Med Phys 46(11):4763–4776. https://doi.org/10.1002/mp.13627

    Article  PubMed  Google Scholar 

  22. Willemink MJ, Noel PB (2019) The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol 29(5):2185–2195. https://doi.org/10.1007/s00330-018-5810-7

    Article  PubMed  Google Scholar 

  23. Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, Yu Z, Akino N, Awai K (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29(11):6163–6171. https://doi.org/10.1007/s00330-019-06170-3

    Article  PubMed  Google Scholar 

  24. Awai K, Higaki T, Tatsugami F (2014) Clinically essential requirement for brain CT with iterative reconstruction. Br J Radiol 87(1044):20140474. https://doi.org/10.1259/bjr.20140474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schaller F, Sedlmair M, Raupach R, Uder M, Lell M (2016) Noise reduction in abdominal computed tomography applying iterative reconstruction (ADMIRE). Acad Radiol 23(10):1230–1238. https://doi.org/10.1016/j.acra.2016.05.016

    Article  PubMed  Google Scholar 

  26. Khawaja RD, Singh S, Otrakji A, Padole A, Lim R, Nimkin K, Westra S, Kalra MK, Gee MS (2015) Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol 45(7):1046–1055. https://doi.org/10.1007/s00247-014-3235-2

    Article  PubMed  Google Scholar 

  27. Greffier J, Frandon J, Pereira F, Hamard A, Beregi JP, Larbi A, Omoumi P (2020) Optimization of radiation dose for CT detection of lytic and sclerotic bone lesions: a phantom study. Eur Radiol 30(2):1075–1078. https://doi.org/10.1007/s00330-019-06425-z

    Article  CAS  PubMed  Google Scholar 

Download references

Author contribution statement

Injoong Kim participated in material preparation, data collection and analysis, drafting the manuscript, and funding acquisition. Na-Young Shin designed the study and participated in the analysis of data and interpretation, and critical revision of the manuscript for important intellectual content. Hyunkoo Kang participated in study concept and design and critical revision of the manuscript for important intellectual content. Hyun Jung Yoon participated in study concept and design and critical revision of the manuscript for important intellectual content. Bo Mi Chung participated in study concept and design and critical revision of the manuscript for important intellectual content. All authors read and approved the final manuscript.

Funding

This study was supported by a Veterans Health Service Medical Center Research Grant, Republic of Korea (VHSMC 20057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na-Young Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

For this type of retrospective study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Kang, H., Yoon, H.J. et al. Deep learning–based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Neuroradiology 63, 905–912 (2021). https://doi.org/10.1007/s00234-020-02574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-020-02574-x

Keywords

Navigation