Skip to main content

Advertisement

Log in

Bridging gaps between images and data: a systematic update on imaging biobanks

  • Imaging Informatics and Artificial Intelligence
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Background and objective

The systematic collection of medical images combined with imaging biomarkers and patient non-imaging data is the core concept of imaging biobanks, a key element for fuelling the development of modern precision medicine. Our purpose is to review the existing image repositories fulfilling the criteria for imaging biobanks.

Methods

Pubmed, Scopus and Web of Science were searched for articles published in English from January 2010 to July 2021 using a combination of the terms: “imaging” AND “biobanks” and “imaging” AND “repository”. Moreover, the Community Research and Development Information Service (CORDIS) database (https://cordis.europa.eu/projects) was searched using the terms: “imaging” AND “biobanks”, also including collections, projects, project deliverables, project publications and programmes.

Results

Of 9272 articles retrieved, only 54 related to biobanks containing imaging data were finally selected, of which 33 were disease-oriented (61.1%) and 21 population-based (38.9%). Most imaging biobanks were European (26/54, 48.1%), followed by American biobanks (20/54, 37.0%). Among disease-oriented biobanks, the majority were focused on neurodegenerative (9/33, 27.3%) and oncological diseases (9/33, 27.3%). The number of patients enrolled ranged from 240 to 3,370,929, and the imaging modality most frequently involved was MRI (40/54, 74.1%), followed by CT (20/54, 37.0%), PET (13/54, 24.1%), and ultrasound (12/54, 22.2%). Most biobanks (38/54, 70.4%) were accessible under request.

Conclusions

Imaging biobanks can serve as a platform for collecting, sharing and analysing medical images integrated with imaging biomarkers, biological and clinical data. A relatively small proportion of current biobanks also contain images and can thus be classified as imaging biobanks.

Key Points

• Imaging biobanks are a powerful tool for large-scale collection and processing of medical images integrated with imaging biomarkers and patient non-imaging data.

• Most imaging biobanks retrieved were European, disease-oriented and accessible under user request.

• While many biobanks have been developed so far, only a relatively small proportion of them are imaging biobanks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

BBMRI-ERIC:

Biobanking and BioMolecular resources Research Infrastructure — European Research Infrastructure Consortium

CARDIATEAM:

CARdiomyopathy in type 2 DIAbetes mellitus

COPD:

Chronic obstructive pulmonary disease

CORDIS:

Community Research and Development Information Service

DIPG:

Diffuse intrinsic pontine glioma

DMG:

Diffuse midline glioma

DXA:

Dual-energy X-ray absorptiometry

ESR:

European Society of Radiology

FAIR:

Findability, Accessibility, Interoperability, and Reusability

GDPR:

General Data Protection Regulation

HPCI:

High-performance computing infrastructure

MESA:

Multi-Ethnic Study of Atherosclerosis

MIABIS:

Minimum Information About BIobank data Sharing

Mobit:

Molecular Biomarkers for Individualized Therapy

OMOP CDM:

Observational Medical Outcomes Partnership Common Data Model

PRIMAGE:

PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

References

  1. Litton J-E (2018) Launch of an infrastructure for health research: BBMRI-ERIC. Biopreserv Biobank 16:233–241

    Article  PubMed  Google Scholar 

  2. http://biospecimens.cancer.gov/patientcorner/. Accessed 12 Aug 2021

  3. Siwek M (2015) An overview of biorepositories—past, present, and future. Mil Med 180:57–66

    Article  PubMed  Google Scholar 

  4. Marodin G, França P, da Rocha JCC, Campos AH (2012) Biobanking for health research in Brazil: present challenges and future directions. Rev Panam Salud Publica 31:523–528

    Article  PubMed  Google Scholar 

  5. Coppola L, Cianflone A, Grimaldi AM et al (2019) Biobanking in health care: evolution and future directions. J Transl Med 17:172

    Article  PubMed  PubMed Central  Google Scholar 

  6. WMA Declaration of Taipei on ethical considerations regarding health databases and biobanks. https://www.wma.net/policies-post/wma-declaration-of-taipei-on-ethical-considerations-regarding-health-databases-and-biobanks. Accessed 12 Aug 2021

  7. Ikram MA, Arfan Ikram M, van der Lugt A et al (2015) The Rotterdam Scan Study: design update 2016 and main findings. Eur J Epidemiol 30:1299–1315

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bild DE (2002) Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol 156:871–881

    Article  PubMed  Google Scholar 

  9. Littlejohns TJ, Holliday J, Gibson LM et al (2020) The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat Commun 11:2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. European Society of Radiology (ESR) (2015) ESR position paper on imaging biobanks. Insights Imaging 6:403–410

    Article  Google Scholar 

  11. Neri E, Regge D (2017) Imaging biobanks in oncology: European perspective. Future Oncol 13:433–441

    Article  CAS  PubMed  Google Scholar 

  12. Neri E, Del Re M, Paiar F et al (2018) Radiomics and liquid biopsy in oncology: the holons of systems medicine. Insights Imaging 9:915–924

    Article  PubMed  PubMed Central  Google Scholar 

  13. https://www.primageproject.eu/. Accessed 12 Aug 2021

  14. https://chaimeleon.eu/. Accessed 12 Aug 2021

  15. https://www.procancer-i.eu. Accessed 12 Aug 2021

  16. https://eucanimage.eu/. Accessed 12 Aug 2021

  17. Macheiner T, Huppertz B, Bayer M, Sargsyan K (2017) Challenges and driving forces for business plans in biobanking. Biopreserv Biobank 15:121–125

    Article  PubMed  Google Scholar 

  18. Mendy M, Caboux E, Sylla BS et al (2014) Infrastructure and facilities for human biobanking in low- and middle-income countries: a situation analysis. Pathobiology 81:252–260

    Article  PubMed  Google Scholar 

  19. Vaught J, Lockhart NC (2012) The evolution of biobanking best practices. Clin Chim Acta 413:1569–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ballantyne A, Eriksson S (2019) Research ethics revised: the new CIOMS guidelines and the World Medical Association Declaration of Helsinki in context. Bioethics 33:310–311

    Article  PubMed  Google Scholar 

  21. Chassang G, Rial-Sebbag E (2018) Research biobanks and health databases: the WMA Declaration of Taipei, added value to european legislation (soft and hard law). Eur J Health Law 25:501–516

    Article  Google Scholar 

  22. Shabani M, Chassang G, Marelli L (2021) The impact of the GDPR on the governance of biobank research. In: Slokenberga S, Tzortzatou O, Reichel J (eds) GDPR and biobanking. Law, governance and technology series, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-49388-2_4

  23. Gatidis S, Heber SD, Storz C, Bamberg F (2017) Population-based imaging biobanks as source of big data. Radiol Med 122:430–436

  24. Moher D (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264

    Article  PubMed  Google Scholar 

  25. Malden D, Lacey B, Emberson J et al (2019) Body fat distribution and systolic blood pressure in 10,000 adults with whole-body imaging: UK Biobank and Oxford BioBank. Obesity (Silver Spring) 27:1200–1206

  26. Al Kuwari H, Al Thani A, Al Marri A et al (2015) The Qatar Biobank: background and methods. BMC Public Health 15:1208

    Article  PubMed  PubMed Central  Google Scholar 

  27. Casasnovas JA, Alcaide V, Civeira F et al (2012) Aragon workers’ health study – design and cohort description. BMC Cardiovasc Disord 12:45

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ikram MA, Brusselle GGO, Murad SD et al (2017) The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol 32:807–850

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vonder M, van der Aalst CM, Vliegenthart R et al (2018) Coronary artery calcium imaging in the ROBINSCA trial: rationale, design, and technical background. Acad Radiol 25:118–128

    Article  PubMed  Google Scholar 

  30. Xia C, Rook M, Pelgrim GJ et al (2020) Early imaging biomarkers of lung cancer, COPD and coronary artery disease in the general population: rationale and design of the ImaLife (Imaging in Lifelines) Study. Eur J Epidemiol 35:75–86

    Article  PubMed  Google Scholar 

  31. Bamberg F, Kauczor H-U, Weckbach S et al (2015) Whole-body MR imaging in the German National Cohort: rationale, design, and technical background. Radiology 277:206–220

    Article  PubMed  Google Scholar 

  32. Lee C, Choe EK, Choi JM, et al (2018) Health and Prevention Enhancement (H-PEACE): a retrospective, population-based cohort study conducted at the Seoul National University Hospital Gangnam Center, Korea. BMJ Open 8:e019327

  33. Schumann G, Loth E, Banaschewski T et al (2010) The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 15:1128–1139

    Article  CAS  PubMed  Google Scholar 

  34. Holmes AJ, Hollinshead MO, O’Keefe TM, et al (2015) Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures. Sci Data 2:150031

  35. Bergström G, Berglund G, Blomberg A et al (2015) The Swedish CArdioPulmonary BioImage Study: objectives and design. J Intern Med 278:645–659

    Article  PubMed  PubMed Central  Google Scholar 

  36. Honda C, Watanabe M, Tomizawa R; Osaka Twin Research Group, Sakai N (2019) Update on Osaka University Twin Registry: an overview of multidisciplinary research resources and biobank at Osaka University Center for Twin Research. Twin Res Hum Genet 22:597–601

  37. Jiang CQ, Lam TH, Lin JM et al (2010) An overview of the Guangzhou biobank cohort study-cardiovascular disease subcohort (GBCS-CVD): a platform for multidisciplinary collaboration. J Hum Hypertens 24:139–150

    Article  CAS  PubMed  Google Scholar 

  38. Berge T, Vigen T, Pervez MO et al (2015) Heart and brain interactions–the Akershus Cardiac Examination (ACE) 1950 Study Design. Scand Cardiovasc J 49:308–315

    PubMed  Google Scholar 

  39. Fernández-Ortiz A, Jiménez-Borreguero LJ, Peñalvo JL et al (2013) The Progression and Early detection of Subclinical Atherosclerosis (PESA) study: rationale and design. Am Heart J 166:990–998

    Article  PubMed  Google Scholar 

  40. Anand SS, Abonyi S, Arbour L et al (2018) Canadian Alliance for Healthy Hearts and Minds: first nations cohort study rationale and design. Prog Community Health Partnersh 12:55–64

    Article  PubMed  Google Scholar 

  41. Kruithof CJ, Kooijman MN, van Duijn CM et al (2014) The Generation R Study: biobank update 2015. Eur J Epidemiol 29:911–927

    Article  CAS  PubMed  Google Scholar 

  42. Walker L, Chang L-C, Nayak A et al (2016) The diffusion tensor imaging (DTI) component of the NIH MRI study of normal brain development (PedsDTI). Neuroimage 124:1125–1130

    Article  PubMed  Google Scholar 

  43. Casey BJ, Cannonier T, Conley MI et al (2018) The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev Cogn Neurosci 32:43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harms MP, Somerville LH, Ances BM et al (2018) Extending the Human Connectome project across ages: imaging protocols for the lifespan development and aging projects. Neuroimage 183:972–984

    Article  PubMed  Google Scholar 

  45. Sidorenkov G, Nagel J, Meijer C et al (2019) The OncoLifeS data-biobank for oncology: a comprehensive repository of clinical data, biological samples, and the patient’s perspective. J Transl Med 17:374

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reijs BLR, Teunissen CE, Goncharenko N et al (2015) The central biobank and virtual biobank of BIOMARKAPD: a resource for studies on neurodegenerative diseases. Front Neurol 6:216

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kott KA, Vernon ST, Hansen T, et al (2019) Biobanking for discovery of novel cardiovascular biomarkers using imaging-quantified disease burden: protocol for the longitudinal, prospective, BioHEART-CT cohort study. BMJ Open 9:e028649

  48. Schram MT, Sep SJS, van der Kallen CJ et al (2014) The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur J Epidemiol 29:439–451

    Article  PubMed  Google Scholar 

  49. Ferreira LE, de França PHC, Nagel V et al (2017) Joinville stroke biobank: study protocol and first year’s results. Arq Neuropsiquiatr 75:881–889

    Article  PubMed  Google Scholar 

  50. Knudsen GM, Jensen PS, Erritzoe D et al (2016) The Center for Integrated Molecular Brain Imaging (Cimbi) database. Neuroimage 124:1213–1219

    Article  PubMed  Google Scholar 

  51. Niklinski J, Kretowski A, Moniuszko M et al (2017) Systematic biobanking, novel imaging techniques, and advanced molecular analysis for precise tumor diagnosis and therapy: the Polish MOBIT project. Adv Med Sci 62:405–413

    Article  PubMed  Google Scholar 

  52. Akinyemi RO, Akinwande K, Diala S et al (2018) Biobanking in a challenging African environment: unique experience from the SIREN project. Biopreserv Biobank 16:217–232

  53. Alexander LM, Escalera J, Ai L, et al (2017) An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci Data 4:170181

  54. Di Martino A, Yan C-G, Li Q et al (2014) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19:659–667

    Article  PubMed  Google Scholar 

  55. Weiner MW, Veitch DP, Aisen PS et al (2012) The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 8:S1–S68

  56. van der Flier WM, Scheltens P (2018) Amsterdam Dementia Cohort: performing research to optimize care. J Alzheimers Dis 62:1091–1111

    Article  PubMed  PubMed Central  Google Scholar 

  57. Clark K, Vendt B, Smith K et al (2013) The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 26:1045–1057

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bauermeister S, Orton C, Thompson S et al (2020) The Dementias Platform UK (DPUK) Data Portal. Eur J Epidemiol 35:601–611

    Article  PubMed  PubMed Central  Google Scholar 

  59. Szendroedi J, Saxena A, Weber KS et al (2016) Cohort profile: the German Diabetes Study (GDS). Cardiovasc Diabetol 15:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Martí-Bonmatí L, Alberich-Bayarri Á, Ladenstein R et al (2020) PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur Radiol Exp 4:22

    Article  PubMed  PubMed Central  Google Scholar 

  61. Clavreul A, Soulard G, Lemée J-M et al (2019) The French glioblastoma biobank (FGB): a national clinicobiological database. J Transl Med 17:133

    Article  PubMed  PubMed Central  Google Scholar 

  62. Das S, Abou-Haidar R, Rabalais H et al (2021) The C-BIG Repository: an institution-level open science platform. Neuroinformatics. https://doi.org/10.1007/s12021-021-09516-9

    Article  PubMed  Google Scholar 

  63. Manniën J, Ledderhof T, Verspaget HW et al (2017) The Parelsnoer Institute: a national network of standardized clinical biobanks in the Netherlands. Open Journal of Bioresources 4:3. https://doi.org/10.5334/ojb.23

    Article  Google Scholar 

  64. Aibaidula A, Lu J-F, Wu J-S et al (2015) Establishment and maintenance of a standardized glioma tissue bank: Huashan experience. Cell Tissue Banking 16:271–281

    Article  CAS  PubMed  Google Scholar 

  65. Duncan D, Vespa P, Pitkänen A et al (2019) Big data sharing and analysis to advance research in post-traumatic epilepsy. Neurobiol Dis 123:127–136

    Article  PubMed  Google Scholar 

  66. Karch A, Vogelmeier C, Welte T et al (2016) The German COPD cohort COSYCONET: aims, methods and descriptive analysis of the study population at baseline. Respir Med 114:27–37

    Article  PubMed  Google Scholar 

  67. Respondek G, Höglinger GU (2021) DescribePSP and ProPSP: German multicenter networks for standardized prospective collection of clinical data, imaging data, and biomaterials of patients with progressive supranuclear palsy. Front Neurol 12:644064

  68. Besser L, Kukull W, Knopman DS et al (2018) Version 3 of the National Alzheimer’s Coordinating Center’s uniform data set. Alzheimer Dis Assoc Disord 32:351–358

    Article  PubMed  PubMed Central  Google Scholar 

  69. Maas AIR, Menon DK, Steyerberg EW et al (2015) Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 76:67–80

    Article  PubMed  Google Scholar 

  70. Fowler C, Rainey-Smith SR, Bird S et al (2021) Fifteen years of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study: progress and observations from 2,359 older adults spanning the spectrum from cognitive normality to Alzheimer’s disease. J Alzheimers Dis Rep 5:443–468

  71. Elbers DC, Fillmore NR, Sung F-C, et al (2020) The Veterans Affairs Precision Oncology Data Repository, a clinical, genomic, and imaging research database. Patterns 1:100083

  72. Baugh J, Bartels U, Leach J et al (2017) The international diffuse intrinsic pontine glioma registry: an infrastructure to accelerate collaborative research for an orphan disease. J Neurooncol 132:323–331

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ofori E, Du G, Babcock D et al (2016) Parkinson’s disease biomarkers program brain imaging repository. Neuroimage 124:1120–1124

    Article  PubMed  Google Scholar 

  74. Rosenthal A, Gabrielian A, Engle E et al (2017) The TB Portals: an open-access, web-based platform for global drug-resistant-tuberculosis data sharing and analysis. J Clin Microbiol 55:3267–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schwedt TJ, Digre K, Tepper SJ et al (2020) The American Registry for Migraine Research: research methods and baseline data for an initial patient cohort. Headache 60:337–347

    Article  PubMed  Google Scholar 

  76. Giese A-K, Schirmer MD, Donahue KL, et al (2017) Design and rationale for examining neuroimaging genetics in ischemic stroke: the MRI-GENIE study. Neurol Genet 3:e180

  77. Lakhani DA, Chen S-C, Antic S et al (2021) Establishing a cohort and a biorepository to identify biomarkers for early detection of lung cancer: the Nashville Lung Cancer Screening Trial Cohort. Ann Am Thorac Soc 18:1227–1234

    Article  PubMed  PubMed Central  Google Scholar 

  78. https://cardiateam.eu/. Accessed 12 Aug 2021

  79. http://ec.europa.eu/information_society/newsroom/cf/dae/document.cfm?doc_id=4188. Accessed 12 Aug 2021

  80. Martí-Bonmatí L, Ruiz-Martínez E, Ten A, Alberich-Bayarri A (2018) Cómo integrar la información cuantitativa en el informe radiológico del paciente oncológico. Radiologia 60:43–52

    Article  Google Scholar 

  81. Shi L, He Y, Yuan Z et al (2018) Radiomics for response and outcome assessment for non-small cell lung cancer. Technol Cancer Res Treat 17:1533033818782788

    Article  PubMed  PubMed Central  Google Scholar 

  82. Riley RD, Ensor J, Snell KIE, et al (2020) Calculating the sample size required for developing a clinical prediction model. BMJ 368:m441

  83. Wu P-Y, Cheng C-W, Kaddi CD et al (2017) Omic and electronic health record big data analytics for precision medicine. IEEE Trans Biomed Eng 64:263–273

    Article  PubMed  Google Scholar 

  84. Im K, Gui D, Yong WH (2019) An introduction to hardware, software, and other information technology needs of biomedical biobanks. Methods Mol Biol 1897:17–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Norlin L, Fransson MN, Eriksson M et al (2012) A minimum data set for sharing biobank samples, information, and data: MIABIS. Biopreserv Biobank 10:343–348

    Article  PubMed  Google Scholar 

  86. Merino-Martinez R, Norlin L, van Enckevort D et al (2016) Toward global biobank integration by implementation of the minimum information about biobank data sharing (MIABIS 2.0 Core). Biopreserv Biobank 14:298–306

    Article  PubMed  Google Scholar 

  87. https://www.ohdsi.org/data-standardization. Accessed 12 Aug 2021

  88. Scapicchio C, Gabelloni M, Forte SM et al (2021) DICOM-MIABIS integration model for biobanks: a use case of the EU PRIMAGE project. Eur Radiol Exp 5:20

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Laura Landi (clinical trials office) for her kind support in manuscript preparation.

Funding

This study has been partially funded by the HORIZON 2020 projects CHAIMELEON, Grant agreement #952172, PRIMAGE, Grant agreement #826494, EuCanImage, Grant agreement #952103 and Procancer-I, Grant agreement #952159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Faggioni.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Prof. Emanuele Neri.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not necessary because our manuscript is a literature review on existing imaging biobanks

Ethical approval

Institutional Review Board approval was not required because our manuscript is a literature review.

Methodology

  • Review paper

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Michela Gabelloni and Lorenzo Faggioni are co-first authors.

Luis Martí-Bonmatí and Emanuele Neri are co-last authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabelloni, M., Faggioni, L., Borgheresi, R. et al. Bridging gaps between images and data: a systematic update on imaging biobanks. Eur Radiol 32, 3173–3186 (2022). https://doi.org/10.1007/s00330-021-08431-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-021-08431-6

Keywords

Navigation