Skip to main content
Log in

Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma: molecular and genetic background

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Gadoxetic acid-enhanced magnetic resonance imaging (MRI) plays important roles in diagnosis of hepatic lesions because of its superiority in the detectability of small lesions, its differentiation ability, and its utility for the early diagnosis of hepatocellular carcinoma (HCC). In HCC, expression of organic anion transporting polypeptide (OATP) 1B3 correlates with the enhancement ratio in the hepatobiliary phase. Gadoxetic acid-enhanced MRI, an indirect molecular imaging method, reflects OATP1B3 expression in HCC. OATP1B3 expression gradually decreases from the dysplastic nodule stage to advanced HCC. Decreased expression is a sensitive marker of multistep hepatocarcinogenesis, especially in the early stages. Hypervascular HCCs commonly show hypointensity in the hepatobiliary phase corresponding to a decrease in OATP1B3; however, approximately 10% of HCCs show hyperintensity due to OATP1B3 overexpression. This hyperintense HCC shows less aggressive biological features and has a better prognosis than hypointense HCC. Hyperintense HCC can be classified into a genetic subtype of HCC with a mature hepatocyte-like molecular expression. OATP1B3 expression and the less aggressive nature of hyperintense HCC are regulated by the molecular interaction of β-catenin signaling and hepatocyte nuclear factor 4α, a tumor suppressor factor. Gadoxetic acid-enhanced MR imaging has the potential to be an imaging biomarker for HCC.

Key Points

• The hepatobiliary phase is a sensitive indirect indicator of organic anion transporting polypeptide1B3 (OATP1B3) expression in hepatocellular carcinoma (HCC).

• The OATP1B3 expression, namely, enhancement in the hepatobiliary phase, decreases from the very early stage of hepatocarcinogenesis, contributing to early diagnosis of HCC.

• HCC showing hyperintensity on the hepatobiliary phase is a peculiar genetic subtype of HCC with OATP1B3 overexpression, a less aggressive nature, and mature hepatocyte-like molecular/genetic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFP:

Alpha fetoprotein

CT:

Computed tomography

FNH:

Focal nodular hyperplasia

FOXM:

Forkhead box M

HCA:

Hepatocellular adenoma

HCC:

Hepatocellular carcinoma

HNF:

Hepatocyte nuclear factor

MRI:

Magnetic resonance imaging

MRP:

Multidrug-resistance-associated protein

OATP:

Organic anion transporting polypeptide

References

  1. Hamm B, Staks T, Muhler A et al (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195:785–792

    CAS  PubMed  Google Scholar 

  2. Vogl TJ, Kummel S, Hammerstingl R et al (1996) Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology 200:59–67

    CAS  PubMed  Google Scholar 

  3. Reimer P, Rummeny EJ, Daldrup HE et al (1997) Enhancement characteristics of liver metastases, hepatocellular carcinomas, and hemangiomas with Gd-EOB-DTPA: preliminary results with dynamic MR imaging. Eur Radiol 7:275–280

    CAS  PubMed  Google Scholar 

  4. Huppertz A, Haraida S, Kraus A et al (2005) Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT—initial observations. Radiology 234:468–478

    PubMed  Google Scholar 

  5. Huppertz A, Balzer T, Blakeborough A et al (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230:266–275

    PubMed  Google Scholar 

  6. Park G, Kim YK, Kim CS, Yu HC, Hwang SB (2010) Diagnostic efficacy of gadoxetic acid-enhanced MRI in the detection of hepatocellular carcinomas: comparison with gadopentetate dimeglumine. Br J Radiol 83:1010–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Besa C, Kakite S, Cooper N, Facciuto M, Taouli B (2015) Comparison of gadoxetic acid and gadopentetate dimeglumine-enhanced MRI for HCC detection: prospective crossover study at 3 T. Acta Radiol Open 4:2047981614561285

    PubMed  PubMed Central  Google Scholar 

  8. Di Martino M, Marin D, Guerrisi A et al (2010) Intraindividual comparison of gadoxetate disodium-enhanced MR imaging and 64-section multidetector CT in the detection of hepatocellular carcinoma in patients with cirrhosis. Radiology 256:806–816

    PubMed  Google Scholar 

  9. Sano K, Ichikawa T, Motosugi U et al (2011) Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology 261:834–844

    PubMed  Google Scholar 

  10. Semaan S, Vietti Violi N, Lewis S et al (2020) Hepatocellular carcinoma detection in liver cirrhosis: diagnostic performance of contrast-enhanced CT vs. MRI with extracellular contrast vs. gadoxetic acid. Eur Radiol 30(2):1020–1030. https://doi.org/10.1007/s00330-019-06458-4

    Article  CAS  PubMed  Google Scholar 

  11. The International Consensus Group for Hepatocellular Neoplasia (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664

    Google Scholar 

  12. Kitao A, Matsui O, Yoneda N et al (2011) The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol 21:2056–2066

    PubMed  Google Scholar 

  13. Kogita S, Imai Y, Okada M et al (2010) Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol 20:2405–2413

    PubMed  Google Scholar 

  14. Channual S, Tan N, Siripongsakun S, Lassman C, Lu DS, Raman SS (2015) Gadoxetate disodium-enhanced MRI to differentiate dysplastic nodules and grade of hepatocellular carcinoma: correlation with histopathology. AJR Am J Roentgenol 205:546–553

    PubMed  Google Scholar 

  15. Narita M, Hatano E, Arizono S et al (2009) Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol 44:793–798

    CAS  PubMed  Google Scholar 

  16. Tsuboyama T, Onishi H, Kim T et al (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255:824–833

    PubMed  Google Scholar 

  17. Kitao A, Zen Y, Matsui O et al (2010) Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR imaging—correlation with molecular transporters and histopathologic features. Radiology 256:817–826

    PubMed  Google Scholar 

  18. Lee SA, Lee CH, Jung WY et al (2011) Paradoxical high signal intensity of hepatocellular carcinoma in the hepatobiliary phase of Gd-EOB-DTPA enhanced MRI: initial experience. Magn Reson Imaging 29:83–90

    PubMed  Google Scholar 

  19. Ueno A, Masugi Y, Yamazaki K et al (2014) OATP1B3 expression is strongly associated with Wnt/beta-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 61:1080–1087

    CAS  PubMed  Google Scholar 

  20. Miura T, Ban D, Tanaka S et al (2015) Distinct clinicopathological phenotype of hepatocellular carcinoma with ethoxybenzyl-magnetic resonance imaging hyperintensity: association with gene expression signature. Am J Surg 210:561–569

    PubMed  Google Scholar 

  21. Kitao A, Matsui O, Yoneda N et al (2012) Hypervascular hepatocellular carcinoma: correlation between biologic features and signal intensity on gadoxetic acid-enhanced MR images. Radiology 265:780–789

    PubMed  PubMed Central  Google Scholar 

  22. Yamashita T, Kitao A, Matsui O et al (2014) Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology 60:1674–1685

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi JW, Lee JM, Kim SJ et al (2013) Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR images and their value as an imaging biomarker. Radiology 267:776–786

    PubMed  Google Scholar 

  24. European Society of Radilogy (ESR) (2013) ESR statement on the stepwise development of imaging biomarkers. Insights Imaging 4:147–152

    Google Scholar 

  25. Motosugi U, Ichikawa T, Sou H et al (2009) Dilution method of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). J Magn Reson Imaging 30:849–854

    PubMed  Google Scholar 

  26. Motosugi U, Ichikawa T, Sano K et al (2011) Double-dose gadoxetic acid-enhanced magnetic resonance imaging in patients with chronic liver disease. Invest Radiol 46:141–145

    CAS  PubMed  Google Scholar 

  27. Haradome H, Grazioli L, Tsunoo M et al (2010) Can MR fluoroscopic triggering technique and slow rate injection provide appropriate arterial phase images with reducing artifacts on gadoxetic acid-DTPA (Gd-EOB-DTPA)-enhanced hepatic MR imaging? J Magn Reson Imaging 32:334–340

    PubMed  Google Scholar 

  28. Tanimoto A, Higuchi N, Ueno A (2012) Reduction of ringing artifacts in the arterial phase of gadoxetic acid-enhanced dynamic MR imaging. Magn Reson Med Sci 11:91–97

    PubMed  Google Scholar 

  29. Davenport MS, Viglianti BL, Al-Hawary MM et al (2013) Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 266:452–461

    PubMed  Google Scholar 

  30. Davenport MS, Bashir MR, Pietryga JA, Weber JT, Khalatbari S, Hussain HK (2014) Dose-toxicity relationship of gadoxetate disodium and transient severe respiratory motion artifact. AJR Am J Roentgenol 203:796–802

    PubMed  Google Scholar 

  31. Agrawal MD, Spincemaille P, Mennitt KW et al (2013) Improved hepatic arterial phase MRI with 3-second temporal resolution. J Magn Reson Imaging 37:1129–1136

    PubMed  Google Scholar 

  32. Kim DH, Choi SH, Byun JH et al (2019) Arterial subtraction images of gadoxetate-enhanced MRI improve diagnosis of early-stage hepatocellular carcinoma. J Hepatol 71:534–542

    CAS  PubMed  Google Scholar 

  33. Song JS, Choi EJ, Park EH, Lee JH (2018) Comparison of transient severe motion in gadoxetate disodium and gadopentetate dimeglumine-enhanced MRI: effect of modified breath-holding method. Eur Radiol 28:1132–1139

    PubMed  Google Scholar 

  34. Pietryga JA, Burke LM, Marin D, Jaffe TA, Bashir MR (2014) Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology 271:426–434

    PubMed  Google Scholar 

  35. Bashir MR, Husarik DB, Ziemlewicz TJ, Gupta RT, Boll DT, Merkle EM (2012) Liver MRI in the hepatocyte phase with gadolinium-EOB-DTPA: does increasing the flip angle improve conspicuity and detection rate of hypointense lesions? J Magn Reson Imaging 35:611–616

    PubMed  Google Scholar 

  36. Haradome H, Grazioli L, Al Manea K et al (2012) Gadoxetic acid disodium-enhanced hepatocyte phase MRI: can increasing the flip angle improve focal liver lesion detection? J Magn Reson Imaging 35:132–139

    PubMed  Google Scholar 

  37. Gupta RT, Marin D, Boll DT et al (2012) Hepatic hemangiomas: difference in enhancement pattern on 3T MR imaging with gadobenate dimeglumine versus gadoxetate disodium. Eur J Radiol 81:2457–2462

    PubMed  Google Scholar 

  38. Doo KW, Lee CH, Choi JW, Lee J, Kim KA, Park CM (2009) “Pseudo washout” sign in high-flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor. AJR Am J Roentgenol 193:W490–W496

    PubMed  Google Scholar 

  39. Tateyama A, Fukukura Y, Takumi K, Shindo T, Kumagae Y, Nakamura F (2016) Hepatic hemangiomas: factors associated with pseudo washout sign on Gd-EOB-DTPA-enhanced MR imaging. Magn Reson Med Sci 15:73–82

    CAS  PubMed  Google Scholar 

  40. Kang Y, Lee JM, Kim SH, Han JK, Choi BI (2012) Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 264:751–760

    PubMed  Google Scholar 

  41. Lee SM, Lee JM, Ahn SJ, Kang HJ, Yang HK, Yoon JH (2019) LI-RADS version 2017 versus version 2018: diagnosis of hepatocellular carcinoma on gadoxetate disodium-enhanced MRI. Radiology 292:655–663

    PubMed  Google Scholar 

  42. Nassif A, Jia J, Keiser M et al (2012) Visualization of hepatic uptake transporter function in healthy subjects by using gadoxetic acid-enhanced MR imaging. Radiology 264:741–750

    PubMed  Google Scholar 

  43. Leonhardt M, Keiser M, Oswald S et al (2010) Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 38:1024–1028

    PubMed  Google Scholar 

  44. Jia J, Puls D, Oswald S et al (2014) Characterization of the intestinal and hepatic uptake/efflux transport of the magnetic resonance imaging contrast agent gadolinium-ethoxylbenzyl-diethylenetriamine-pentaacetic acid. Invest Radiol 49:78–86

    CAS  PubMed  Google Scholar 

  45. Abe T, Kakyo M, Tokui T et al (1999) Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem 274:17159–17163

    CAS  PubMed  Google Scholar 

  46. Konig J, Cui Y, Nies AT, Keppler D (2000) Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem 275:23161–23168

    CAS  PubMed  Google Scholar 

  47. Ieiri I, Higuchi S, Sugiyama Y (2009) Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 5:703–729

    CAS  PubMed  Google Scholar 

  48. Benness G, Khangure M, Morris I et al (1996) Hepatic kinetics and magnetic resonance imaging of gadolinium-EOB-DTPA in dogs. Invest Radiol 31:211–217

    CAS  PubMed  Google Scholar 

  49. Grazioli L, Bondioni MP, Haradome H et al (2012) Hepatocellular adenoma and focal nodular hyperplasia: value of gadoxetic acid-enhanced MR imaging in differential diagnosis. Radiology 262:520–529

    PubMed  Google Scholar 

  50. Yoneda N, Matsui O, Kitao A et al (2012) Hepatocyte transporter expression in FNH and FNH-like nodule: correlation with signal intensity on gadoxetic acid enhanced magnetic resonance images. Jpn J Radiol 30:499–508

    CAS  PubMed  Google Scholar 

  51. An HS, Park HS, Kim YJ, Jung SI, Jeon HJ (2013) Focal nodular hyperplasia: characterisation at gadoxetic acid-enhanced MRI and diffusion-weighted MRI. Br J Radiol 86:20130299

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujiwara H, Sekine S, Onaya H, Shimada K, Mikata R, Arai Y (2011) Ring-like enhancement of focal nodular hyperplasia with hepatobiliary-phase Gd-EOB-DTPA-enhanced magnetic resonance imaging: radiological-pathological correlation. Jpn J Radiol 29:739–743

    PubMed  Google Scholar 

  53. Kitao A, Matsui O, Yoneda N et al (2018) Differentiation between hepatocellular carcinoma showing hyperintensity on the hepatobiliary phase of gadoxetic acid-enhanced MRI and focal nodular hyperplasia by CT and MRI. AJR Am J Roentgenol 211:347–357

    PubMed  Google Scholar 

  54. Bioulac-Sage P, Laumonier H, Couchy G et al (2009) Hepatocellular adenoma management and phenotypic classification: the Bordeaux experience. Hepatology 50:481–489

    PubMed  Google Scholar 

  55. Ba-Ssalamah A, Antunes C, Feier D et al (2015) Morphologic and molecular features of hepatocellular adenoma with gadoxetic acid-enhanced MR imaging. Radiology 277:104–113

    PubMed  Google Scholar 

  56. Fukusato T, Soejima Y, Kondo F et al (2015) Preserved or enhanced OATP1B3 expression in hepatocellular adenoma subtypes with nuclear accumulation of beta-catenin. Hepatol Res 45:E32–E42

    CAS  PubMed  Google Scholar 

  57. Sekine S, Ogawa R, Ojima H, Kanai Y (2011) Expression of SLCO1B3 is associated with intratumoral cholestasis and CTNNB1 mutations in hepatocellular carcinoma. Cancer Sci 102:1742–1747

    CAS  PubMed  Google Scholar 

  58. Matsui O, Kadoya M, Kameyama T et al (1991) Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology 178:493–497

    CAS  PubMed  Google Scholar 

  59. Hayashi M, Matsui O, Ueda K et al (1999) Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR Am J Roentgenol 172:969–976

    CAS  PubMed  Google Scholar 

  60. Matsui O, Kobayashi S, Sanada J et al (2011) Hepatocellular nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis. Abdom Imaging 36:264–272

    PubMed  PubMed Central  Google Scholar 

  61. Marrero JA, Kulik LM, Sirlin CB et al (2018) Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 68:723–750

    PubMed  Google Scholar 

  62. Toyoda H, Kumada T, Tada T et al (2013) Non-hypervascular hypointense nodules detected by Gd-EOB-DTPA-enhanced MRI are a risk factor for recurrence of HCC after hepatectomy. J Hepatol 58:1174–1180

    PubMed  Google Scholar 

  63. Kim TH, Woo S, Han S, Suh CH, Lee DH, Lee JM (2019) Hepatobiliary phase hypointense nodule without arterial phase hyperenhancement: are they at risk of HCC recurrence after ablation or surgery? A systematic review and meta-analysis. Eur Radiol. https://doi.org/10.1007/s00330-019-06499-9

    PubMed  Google Scholar 

  64. Kobayashi S, Matsui O, Gabata T et al (2012) Intranodular signal intensity analysis of hypovascular high-risk borderline lesions of HCC that illustrate multi-step hepatocarcinogenesis within the nodule on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 81:3839–3845

    PubMed  Google Scholar 

  65. Cannella R, Calandra A, Cabibbo G, Midiri M, Tang A, Brancatelli G (2019) Hyperintense nodule-in-nodule on hepatobiliary phase arising within hypovascular hypointense nodule: outcome and rate of hypervascular transformation. Eur J Radiol 120:108689

    PubMed  Google Scholar 

  66. Yoneda N, Matsui O, Kitao A et al (2013) Hypervascular hepatocellular carcinomas showing hyperintensity on hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging: a possible subtype with mature hepatocyte nature. Jpn J Radiol 31:480–490

    CAS  PubMed  Google Scholar 

  67. Monga SP (2015) β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology 148:1294–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Miyoshi Y, Iwao K, Nagasawa Y et al (1998) Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res 58:2524–2527

    CAS  PubMed  Google Scholar 

  69. de La Coste A, Romagnolo B, Billuart P et al (1998) Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 95:8847–8851

    PubMed Central  Google Scholar 

  70. Hoshida Y, Nijman SM, Kobayashi M et al (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kitao A, Matsui O, Yoneda N et al (2015) Hepatocellular carcinoma with beta-catenin mutation: imaging and pathologic characteristics. Radiology 275:708–717

    PubMed  Google Scholar 

  72. Trauner M, Halilbasic E (2011) Nuclear receptors as new perspective for the management of liver diseases. Gastroenterology 140(1120–1125):e1121–e1112

    Google Scholar 

  73. Wang X, Kiyokawa H, Dennewitz MB, Costa RH (2002) The Forkhead box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci U S A 99:16881–16886

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Crestani M, De Fabiani E, Caruso D et al (2004) LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochem Soc Trans 32:92–96

    CAS  PubMed  Google Scholar 

  75. Halilbasic E, Claudel T, Trauner M (2013) Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 58:155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bonzo JA, Ferry CH, Matsubara T, Kim JH, Gonzalez FJ (2012) Suppression of hepatocyte proliferation by hepatocyte nuclear factor 4alpha in adult mice. J Biol Chem 287:7345–7356

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ning BF, Ding J, Yin C et al (2010) Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res 70:7640–7651

    CAS  PubMed  Google Scholar 

  78. Hatziapostolou M, Polytarchou C, Aggelidou E et al (2011) An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell 147:1233–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kitao A, Matsui O, Yoneda N et al (2018) Gadoxetic acid-enhanced magnetic resonance imaging reflects co-activation of beta-catenin and hepatocyte nuclear factor 4alpha in hepatocellular carcinoma. Hepatol Res 48:205–216

    CAS  PubMed  Google Scholar 

  80. Colletti M, Cicchini C, Conigliaro A et al (2009) Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation. Gastroenterology 137:660–672

    CAS  PubMed  Google Scholar 

  81. Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680

    CAS  Google Scholar 

  82. Chen J, Wu Z, Xia C et al (2020) Noninvasive prediction of HCC with progenitor phenotype based on gadoxetic acid-enhanced MRI. Eur Radiol 30(2):1232–1242. https://doi.org/10.1007/s00330-019-06414-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azusa Kitao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Guarantor

The scientific guarantor of this publication is Toshifumi Gabata, M.D., Ph.D.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required because this is a review article.

Ethical approval

Institutional review board approval was not required because this is a review article.

Methodology

• review article

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitao, A., Matsui, O., Yoneda, N. et al. Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma: molecular and genetic background. Eur Radiol 30, 3438–3447 (2020). https://doi.org/10.1007/s00330-020-06687-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-020-06687-y

Keywords

Navigation