Skip to main content
Log in

Hepatobiliary-phase gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid MRI for pretreatment prediction of efficacy-to-standard-therapies based on Barcelona Clinic Liver Cancer algorithm: an up-to-date review

  • Review
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Recent advances in systemic therapy have had major impacts on treatment strategies for hepatocellular carcinoma (HCC). The 2022 Barcelona Clinic Liver Cancer (BCLC) guidelines incorporate a new section on clinical decision-making for personalized medicine, although the first treatment suggested by the BCLC guidelines is based on solid scientific evidence. More than ever before, the appropriate treatment strategy must be selected prior to the initiation of therapy for HCC. Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid magnetic resonance imaging (Gd-EOB-DTPA-MRI) is essential for liver imaging and the hepatobiliary phase (HBP) of EOB-MRI reflects the expression of organic anion transporting polypeptide (OATP) transporters. Molecules associated with OATP expression are relevant in the molecular classification of HCC subclasses, and EOB-MRI is becoming increasingly important with advances in the molecular and genetic understanding of HCC. In this review, we describe imaging findings for the pretreatment prediction of response to standard therapies for HCC based on the BCLC algorithm using the HBP of EOB-MRI, with specific attention to the molecular background of OATPs. A more complete understanding of these findings will help radiologists suggest appropriate treatments and clinical follow-ups and could lead to the development of more personalized treatment strategies in the future.

Clinical relevance statement

In the coming era of personalized medicine, HBP of EOB-MRI reflecting molecular and pathological factors could play a predictive role in the therapeutic efficacy of HCC and contribute to treatment selection.

Key Points

• Imaging features of hepatobiliary phase predict treatment efficacy prior to therapy and contribute to treatment choice.

• Wnt/β-catenin activation associated with organic anion transporting polypeptide expression is involved in the tumor immune microenvironment and chemo-responsiveness.

• Peritumoral hypointensity of hepatobiliary phase reflecting microvascular invasion affects the therapeutic efficacy of locoregional to systemic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

BCLC:

Barcelona Clinic Liver Cancer

cTACE:

Conventional transarterial chemoembolization

DEB-TACE:

Drug-eluting bead transarterial chemoembolization

EOB-MRI:

Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid magnetic resonance imaging

Gd-EOB-DTPA:

Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid

HAIC:

Hepatic arterial infusion chemotherapy

HBP:

Hepatobiliary phase

HCC:

Hepatocellular carcinoma

HNF4α:

Hepatocyte nuclear factor 4α

ICI:

Immune checkpoint inhibitor

IDR:

Intrahepatic distant recurrence

IM:

Intrahepatic metastasis

LIRADS:

Liver Imaging Reporting and Data System

LT:

Liver transplantation

MTA:

Molecularly targeted agent

MVI:

Microvascular invasion

NASH:

Non-alcoholic steatohepatitis

OATP:

Organic anion transporting polypeptides

OS:

Overall survival

PD-1:

Programmed cell death-1

PD-L1:

Programmed death-ligand 1

PHLF:

Post-hepatectomy liver failure

PS:

Performance status

RER:

Relative enhancement ratio

RFA:

Radiofrequency ablation

RFS:

Recurrence-free survival

SLCO1B3 :

Solute carrier organic anion transporter 1B3

TACE:

Transarterial chemoembolization

References

  1. Reig M, Forner A, Rimola J et al (2022) BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol 76:681–693

    PubMed  Google Scholar 

  2. Matsumoto MM, Mouli S, Saxena P (2021) Comparing real world, personalized, multidisciplinary tumor board recommendations with BCLC algorithm: 321-patient analysis. Cardiovasc Intervent Radiol 44:1070–1080

    PubMed  Google Scholar 

  3. Calderaro J, Couchy G, Imbeaud S et al (2017) Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 67:727–738

    CAS  PubMed  Google Scholar 

  4. Boyault S, Rickman DS, de Reyniès A et al (2007) Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 45:42–52

    CAS  PubMed  Google Scholar 

  5. Tsujikawa H, Masugi Y, Yamazaki K, Itano O, Kitagawa Y, Sakamoto M (2016) Immunohistochemical molecular analysis indicates hepatocellular carcinoma subgroups that reflect tumor aggressiveness. Hum Pathol 50:24–33

    CAS  PubMed  Google Scholar 

  6. Ueno A, Masugi Y, Yamazaki K et al (2014) OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J Hepatol 61:1080–1087

    CAS  PubMed  Google Scholar 

  7. Kudo M (2020) Gd-EOB-DTPA-MRI could predict WNT/β-catenin mutation and resistance to immune checkpoint inhibitor therapy in hepatocellular carcinoma. Liver Cancer 9:479–490

    PubMed  PubMed Central  Google Scholar 

  8. Aoki T, Nishida N, Kudo M (2022) Clinical significance of the duality of Wnt/β-catenin signaling in human hepatocellular carcinoma. Cancers 14:444

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitao A, Matsui O, Yoneda N et al (2012) Hypervascular hepatocellular carcinoma: correlation between biologic features and signal intensity on gadoxetic acid-enhanced MR images. Radiology 265:780–789

    PubMed  Google Scholar 

  10. Khalaf AM, Fuentes D, Morshid AI et al (2018) Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 5:61–73

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang W, Pan Q, Fuhler GM, Smits R, Peppelenbosch MP (2017) Action and function of Wnt/β-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol 52:419–431

    CAS  PubMed  Google Scholar 

  12. Waisberg J, Saba GT (2015) Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J Hepatol 7:2631–2635

    PubMed  PubMed Central  Google Scholar 

  13. Llovet JM, Montal R, Sia D, Finn RS (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncology 15:599–616

    Google Scholar 

  14. Mao TL, Chu JS, Jeng YM, Lai PL, Hsu HC (2001) Expression of mutant nuclear beta-catenin correlates with non-invasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis. J Pathol 193:95–101

    CAS  PubMed  Google Scholar 

  15. Kitao A, Matsui O, Yoneda N et al (2015) Hepatocellular carcinoma with β-catenin mutation: imaging and pathologic characteristics. Radiology 275:708–717

    PubMed  Google Scholar 

  16. Yoneda N, Matsui O, Kobayashi S et al (2019) Current status of imaging biomarkers predicting the biological nature of hepatocellular carcinoma. Jpn J Radiol 37:191–208

    CAS  PubMed  Google Scholar 

  17. Yoon JK, Choi JY, Rhee H, Park YN (2022) MRI features of histologic subtypes of hepatocellular carcinoma: correlation with histologic, genetic, and molecular biologic classification. Eur Radiol 32:5119–5133

    CAS  PubMed  Google Scholar 

  18. Kitao A, Matsui O, Yoneda N et al (2020) Gadoxetic acid-enhanced MR imaging for hepatocellular carcinoma: molecular and genetic background. Eur Radiol 30:3438–3447

    PubMed  Google Scholar 

  19. Montironi C, Castet F, Haber PK et al (2023) Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut 72:129–140

    CAS  PubMed  Google Scholar 

  20. Hoshida Y, Nijman SM, Kobayashi M et al (2009) Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 69:7385–7392

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kitao A, Matsui O, Yoneda N et al (2018) Gadoxetic acid-enhanced magnetic resonance imaging reflects co-activation of β-catenin and hepatocyte nuclear factor 4α in hepatocellular carcinoma. Hepatol Res 48:205–216

    CAS  PubMed  Google Scholar 

  22. Yoneda N, Matsui O, Kitao A et al (2016) Benign hepatocellular nodules: hepatobiliary phase of gadoxetic acid-enhanced MR imaging based on molecular background. Radiographics 36:2010–2027

    PubMed  Google Scholar 

  23. Lancaster CS, Sprowl JA, Walker AL, Hu S, Gibson AA, Sparreboom A (2013) Modulation of OATP1B-type transporter function alters cellular uptake and disposition of platinum chemotherapeutics. Mol Cancer Ther 12:1537–1544

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231–235

    CAS  PubMed  Google Scholar 

  25. Sia D, Jiao Y, Martinez-Quetglas I et al (2017) Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153:812–826

    CAS  PubMed  Google Scholar 

  26. Xue J, Yu X, Xue L, Ge X, Zhao W, Peng W (2019) Intrinsic β-catenin signaling suppresses CD8+ T-cell infiltration in colorectal cancer. Biomed Pharmacother 115:108921

    CAS  PubMed  Google Scholar 

  27. Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P et al (2019) β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer discov 9:1124–1141

    CAS  PubMed  Google Scholar 

  28. Nishie A, Asayama Y, Ishigami K et al (2014) Clinicopathological significance of the peritumoral decreased uptake area of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid in hepatocellular carcinoma. J Gastroenterol Hepatol 29:561–567

    CAS  PubMed  Google Scholar 

  29. Kim KA, Kim MJ, Jeon HM et al (2012) Prediction of microvascular invasion of hepatocellular carcinoma: usefulness of peritumoral hypointensity seen on gadoxetate disodium-enhanced hepatobiliary phase images. J Magn Reson Imaging 35:629–634

    PubMed  Google Scholar 

  30. Sun L, Mu L, Zhou J et al (2022) Imaging features of gadoxetic acid-enhanced MR imaging for evaluation of tumor-infiltrating CD8 cells and PD-L1 expression in hepatocellular carcinoma. Cancer Immunol Immunother 71:25–38

    CAS  PubMed  Google Scholar 

  31. Kitao A, Matsui O, Zhang Y et al (2023) Dynamic CT and gadoxetic acid-enhanced MRI characteristics of p53-mutated hepatocellular carcinoma. Radiology 306:e220531

    PubMed  Google Scholar 

  32. Ariizumi SI, Ban D, Abe Y et al (2019) High-signal-intensity MR image in the hepatobiliary phase predicts long-term survival in patients with hepatocellular carcinoma. Anticancer Res 39:4219–4225

    CAS  PubMed  Google Scholar 

  33. Fujita N, Nishie A, Kubo Y et al (2015) Hepatocellular carcinoma: clinical significance of signal heterogeneity in the hepatobiliary phase of gadoxetic acid-enhanced MR imaging. Eur Radiol 25:211–220

    PubMed  Google Scholar 

  34. Sasaki R, Nagata K, Fukushima M et al (2022) Evaluating the role of hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging in predicting treatment impact of lenvatinib and atezolizumab plus bevacizumab on unresectable hepatocellular carcinoma. Cancers 14:827

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang F, Numata K, Nihonmatsu H et al (2022) Intraprocedurally EOB-MRI/US fusion imaging focusing on hepatobiliary phase findings can help to reduce the recurrence of hepatocellular carcinoma after radiofrequency ablation. Int J Hyperthermia 37:1149–1158

    Google Scholar 

  36. Lee DH, Lee JM, Lee JY et al (2015) Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MRI: risk of HCC recurrence after radiofrequency ablation. J Hepatol 62:1122–1130

    CAS  PubMed  Google Scholar 

  37. Lee DH, Lee JM, Yu MH et al (2019) Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MR can help determine the treatment method for HCC. Eur Radiol 29:3122–3131

    PubMed  Google Scholar 

  38. Iwamoto T, Imai Y, Igura T et al (2017) Non-hypervascular hypointense hepatic nodules during the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MRI as a risk factor of intrahepatic distant recurrence after radiofrequency ablation of hepatocellular carcinoma. Dig Dis 35:574–582

    PubMed  Google Scholar 

  39. Toyoda H, Kumada T, Tada T, Sone Y, Maeda A, Kaneoka Y (2015) Non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI as a predictor of outcomes for early-stage HCC. Hepatol Int 9:84–92

    PubMed  Google Scholar 

  40. Ahn SJ, Kim JH, Park SJ, Kim ST, Han JK (2019) Hepatocellular carcinoma: preoperative gadoxetic acid-enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis. Abdom Radiol (NY) 44:539–548

    PubMed  Google Scholar 

  41. Kim AY, Sinn DH, Jeong WK et al (2018) Hepatobiliary MRI as novel selection criteria in liver transplantation for hepatocellular carcinoma. J Hepatol 68:1144–1152

    PubMed  Google Scholar 

  42. Kim JW, Lee CH, Park YS et al (2017) The value of paradoxical uptake of hepatocellular carcinoma on the hepatobiliary phase of gadoxetic acid-enhanced liver magnetic resonance imaging for the prediction of lipiodol uptake after transcatheter arterial chemoembolization. Eur J Radiol 89:169–176

    PubMed  Google Scholar 

  43. Ishimaru H, Nakashima K, Sakugawa T et al (2014) Local recurrence after chemoembolization of hepatocellular carcinoma: uptake of gadoxetic acid as a new prognostic factor. AJR Am J Roentgenol 202:744–751

    PubMed  Google Scholar 

  44. Lee JY, Lee BC, Kim HO, Heo SH, Shin SS, Jeong YY (2021) Liver MRI and clinical findings to predict response after drug eluting bead transarterial chemoembolization in hepatocellular carcinoma. Sci Rep 11:24076

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aoki T, Nishida N, Ueshima K et al (2021) Higher enhancement intrahepatic nodules on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI as a poor responsive marker of anti-PD-1/PD-L1 monotherapy for unresectable hepatocellular carcinoma. Liver Cancer 10:615–628

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fujita N, Nishie A, Asayama Y et al (2016) Significance of the signal intensity of gadoxetic acid-enhanced MR imaging for predicting the efficacy of hepatic arterial infusion chemotherapy in hepatocellular carcinoma. Magn Reson Med Sci 15:111–120

    CAS  PubMed  Google Scholar 

  47. Wang JH, Wang CC, Hung CH, Chen CL, Lu SN (2012) Survival comparison between surgical resection and radiofrequency ablation for patients in BCLC very early/early stage hepatocellular carcinoma. J Hepatol 56:412–418

    PubMed  Google Scholar 

  48. Peng ZW, Lin XJ, Zhang YJ et al (2012) Radiofrequency ablation versus hepatic resection for the treatment of hepatocellular carcinomas 2 cm or smaller: a retrospective comparative study. Radiology 262:1022–1033

    PubMed  Google Scholar 

  49. Livraghi T, Meloni F, Di Stasi M et al (2008) Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 47:82–89

    PubMed  Google Scholar 

  50. Lee S, Kang TW, Song KD et al (2021) Effect of microvascular invasion risk on early recurrence of hepatocellular carcinoma after surgery and radiofrequency ablation. Ann Surg 273:564–571

    PubMed  Google Scholar 

  51. Imai K, Yamashita YI, Yusa T et al (2018) Microvascular invasion in small-sized hepatocellular carcinoma: significance for outcomes following hepatectomy and radiofrequency ablation. Anticancer Res 38:1053–1060

    PubMed  Google Scholar 

  52. Mazzaferro V, Llovet JM, Miceli R et al (2009) Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol 10:35–43

    PubMed  Google Scholar 

  53. Iguchi T, Shirabe K, Aishima S et al (2015) New pathologic stratification of microvascular invasion in hepatocellular carcinoma: predicting prognosis after living-donor liver transplantation. Transplantation 99:1236–1242

    CAS  PubMed  Google Scholar 

  54. Bai S, Yang P, Xie Z et al (2021) Preoperative estimated risk of microvascular invasion is associated with prognostic differences following liver resection versus radiofrequency ablation for early hepatitis B virus-related hepatocellular carcinoma. Ann Surg Oncol 28:8174–8185

    PubMed  Google Scholar 

  55. Yamashita YI, Imai K, Yusa T et al (2018) Microvascular invasion of single small hepatocellular carcinoma ≤3 cm: Predictors and optimal treatments. Ann Gastroenterol Surg 2:197–203

    PubMed  PubMed Central  Google Scholar 

  56. Takayama T, Hasegawa K, Izumi N et al (2022) Surgery versus radiofrequency ablation for small hepatocellular carcinoma: a randomized controlled trial (SURF trial). Liver Cancer 11:209–218

    CAS  PubMed  Google Scholar 

  57. Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S (2015) Recurrence of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann Surg 261:947–955

    PubMed  Google Scholar 

  58. Zhou YM, Yang JM, Li B et al (2010) Risk factors for early recurrence of small hepatocellular carcinoma after curative resection. Hepatobiliary Pancreat Dis Int 9:33–37

    PubMed  Google Scholar 

  59. Poon RT, Fan ST, Ng IO, Lo CM, Liu CL, Wong J (2000) Different risk factors and prognosis for early and late intrahepatic recurrence after resection of hepatocellular carcinoma. Cancer 89:500–507

    CAS  PubMed  Google Scholar 

  60. Yang P, Si A, Yang J et al (2019) A wide-margin liver resection improves long-term outcomes for patients with HBV-related hepatocellular carcinoma with microvascular invasion. Surgery 165:721–730

    PubMed  Google Scholar 

  61. Bell R, Begum S, Prasad R, Taura K, Dasari BVM (2022) Volume and flow modulation strategies to mitigate post-hepatectomy liver failure. Front Oncol 12:1021018

    PubMed  PubMed Central  Google Scholar 

  62. Wang Q, Wang A, Sparrelid E et al (2022) Predictive value of gadoxetic acid-enhanced MRI for posthepatectomy liver failure: a systematic review. Eur Radiol 32:1792–1803

    PubMed  Google Scholar 

  63. Mazzaferro V, Regalia E, Doci R et al (1996) Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 334:693–699

    CAS  PubMed  Google Scholar 

  64. Mazzaferro V, Bhoori S, Sposito C et al (2011) Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl 17(Suppl 2):S44–S57

    PubMed  Google Scholar 

  65. Yao FY, Ferrell L, Bass NM, Bacchetti P, Ascher NL, Roberts JP (2002) Liver transplantation for hepatocellular carcinoma: comparison of the proposed UCSF criteria with the Milan criteria and the Pittsburgh modified TNM criteria. Liver Transpl 8:765–774

    PubMed  Google Scholar 

  66. Vasuri F, Golfieri R, Fiorentino M et al (2011) OATP 1B1/1B3 expression in hepatocellular carcinomas treated with orthotopic liver transplantation. Virchows Arch 459:141–146

    CAS  PubMed  Google Scholar 

  67. Yamakado K, Miyayama S, Hirota S et al (2014) Subgrouping of intermediate-stage (BCLC stage B) hepatocellular carcinoma based on tumor number and size and Child-Pugh grade correlated with prognosis after transarterial chemoembolization. Jpn J Radiol 32:260–265

    CAS  PubMed  Google Scholar 

  68. Kim JH, Shim JH, Lee HC et al (2017) New intermediate-stage subclassification for patients with hepatocellular carcinoma treated with transarterial chemoembolization. Liver Int 37:1861–1868

    CAS  PubMed  Google Scholar 

  69. Kudo M, Arizumi T, Ueshima K, Sakurai T, Kitano M, Nishida N (2015) Subclassification of BCLC B stage hepatocellular carcinoma and treatment strategies: proposal of modified Bolondi’s subclassification (Kinki criteria). Dig Dis 33:751–758

    PubMed  Google Scholar 

  70. Saito N, Tanaka T, Nishiohuku H et al (2020) Transarterial- chemoembolization remains an effective therapy for intermediate-stage hepatocellular carcinoma with preserved liver function. Hepatol Res 50:1176–1185

    PubMed  Google Scholar 

  71. Facciorusso A, Mariani L, Sposito C et al (2016) Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma. J Gastroenterol Hepatol 31:645–653

    CAS  PubMed  Google Scholar 

  72. Lammer J, Malagari K, Vogl T et al (2010) Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol 33:41–52

    PubMed  Google Scholar 

  73. Golfieri R, Giampalma E, Renzulli M et al (2014) Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma. Br J Cancer 111:255

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    CAS  PubMed  Google Scholar 

  75. Cheng AL, Kang YK, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34

    CAS  PubMed  Google Scholar 

  76. Finn RS, Qin S, Ikeda M et al (2020) Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 382:1894–1905

    CAS  PubMed  Google Scholar 

  77. Harding JJ, Nandakumar S, Armenia J et al (2019) Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 25:2116–2126

    CAS  PubMed  Google Scholar 

  78. Pfister D, Núñez NG, Pinyol R et al (2021) NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592:450–456

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kuwano A, Tanaka K, Yada M et al (2022) Therapeutic efficacy of lenvatinib for hepatocellular carcinoma with iso-high intensity in the hepatobiliary phase of Gd-EOB-DTPA-MRI. Mol Clin Oncol 16:53

    CAS  PubMed  Google Scholar 

  80. Kubo A, Suda G, Kimura M et al (2021) Characteristics and lenvatinib treatment response of unresectable hepatocellular carcinoma with iso-high intensity in the hepatobiliary phase of EOB-MRI. Cancers 13:3633

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ikeda M, Shimizu S, Sato T et al (2016) Sorafenib plus hepatic arterial infusion chemotherapy with cisplatin versus sorafenib for advanced hepatocellular carcinoma: randomized phase II trial. Ann Oncol 27:2090–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nouso K, Miyahara K, Uchida D et al (2013) Effect of hepatic arterial infusion chemotherapy of 5-fluorouracil and cisplatin for advanced hepatocellular carcinoma in the Nationwide Survey of Primary Liver Cancer in Japan. Br J Cancer 109:1904–1907

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Iwamoto H, Niizeki T, Nagamatsu H et al (2021) Survival benefit of hepatic arterial infusion chemotherapy over sorafenib in the treatment of locally progressed hepatocellular carcinoma. Cancers 13:646

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sung PS, Yang K, Bae SH et al (2019) Reduction of intrahepatic tumour by hepatic arterial infusion chemotherapy prolongs survival in hepatocellular carcinoma. Anticancer Res 39:3909–3916

    CAS  PubMed  Google Scholar 

  85. Tsuboyama T, Onishi H, Kim T et al (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging–correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255:824–833

    PubMed  Google Scholar 

  86. Chernyak V, Fowler KJ, Kamaya A et al (2018) Liver Imaging Reporting and Data System (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology 289:816–830

    PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoyuki Minamiguchi.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Kiyoyuki Minamiguchi.

Conflict of interest

Toshihiro Tanaka received a research grant from Guerbet Jp and Doctor-NET Inc. and lecture fees from Eisai Co., Ltd. None of the other authors have potential conflict of interest to declare.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

This manuscript is a review and therefore there was no requirement of informed consent or approval from institutional review board.

Ethical approval

Institutional review board approval was not required because of the nature of this manuscript (review).

Methodology

• Review article

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 319 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minamiguchi, K., Irizato, M., Uchiyama, T. et al. Hepatobiliary-phase gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid MRI for pretreatment prediction of efficacy-to-standard-therapies based on Barcelona Clinic Liver Cancer algorithm: an up-to-date review. Eur Radiol 33, 8764–8775 (2023). https://doi.org/10.1007/s00330-023-09950-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-09950-0

Keywords

Navigation