Skip to main content
Log in

Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To validate deformable registration algorithms (DRAs) for cine balanced steady-state free precession (bSSFP) assessment of global longitudinal strain (GLS) and global circumferential strain (GCS) using harmonic phase (HARP) cardiovascular magnetic resonance as standard of reference (SoR).

Methods

Seventeen patients and 17 volunteers underwent short axis stack and 2-/4-chamber cine bSSFP imaging with matching slice long-axis and mid-ventricular spatial modulation of magnetization (SPAMM) myocardial tagging. Inverse DRA was applied on bSSFP data for assessment of GLS and GCS while myocardial tagging was processed using HARP. Intra- and inter-observer variability assessment was based on repeated analysis by a single observer and analysis by a second observer, respectively. Standard semi-automated short axis stack segmentation was performed for analysis of left ventricular (LV) volumes and ejection fraction (EF).

Results

DRA demonstrated strong relationships to HARP for myocardial GLS (R2 = 0.75; p < 0.0001) and endocardial GLS (R2 = 0.61; p < 0.0001). GCS result comparison also demonstrated significant relationships between DRA and HARP for myocardial strain (R2 = 0.61; p < 0.0001) and endocardial strain (R2 = 0.51; p < 0.0001). Both methods demonstrated small systematic errors for intra- and inter-observer variability but DRA demonstrated consistently lower CV. Global LVEF was significantly lower (p = 0.0099) in patients (53.7%; IQR 43.9/64.0%) than in healthy volunteers (62.6%; IQR 61.1/66.2%). DRA and HARP strain data demonstrated significant relationships to LVEF.

Conclusions

Non-rigid deformation method–based DRA provides a reliable measure of peak systolic GCS and GLS based on cine bSSFP with superior intra- and inter-observer reproducibility compared to HARP.

Key Point

• Myocardial strain can be reliably analyzed using inverse deformable registration algorithms (DRAs) on cine CMR.

• Inverse DRA-derived strain shows higher reproducibility than tagged CMR.

• DRA and tagged CMR-based myocardial strain demonstrate strong relationships to global left ventricular function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Body surface area

bSSFP:

Balanced steady-state free precession

CMR:

Cardiovascular magnetic resonance

CV:

Coefficient of variation

DENSE:

Displacement encoding with stimulated echoes

DRA:

Deformable registration algorithms

EDV:

End-diastolic volume

EF:

Ejection fraction

ESV:

End-systolic volume

FLASH:

Fast low angle shot

FT:

Feature tracking

GCS:

Global circumferential strain

GLS:

Global longitudinal strain

GRAPPA:

Generalized autocalibrating partial parallel acquisition

GRS:

Global radial strain

HARP:

Harmonic phase

IQR:

Interquartile range

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

MASS:

Myocardial mass

REB:

Research Ethics Board

SENC:

Strain encoded

SoR:

Standard of reference

SPAMM:

Spatial modulation of magnetization

SV:

Stroke volume

TPM:

Tissue phase mapping

References

  1. Sanderson JE (2007) Heart failure with a normal ejection fraction. Heart 93:155–158

    Article  CAS  PubMed  Google Scholar 

  2. Sjøli B, Ørn S, Grenne B et al (2009) Comparison of left ventricular ejection fraction and left ventricular global strain as determinants of infarct size in patients with acute myocardial infarction. J Am Soc Echocardiogr 22:1232–1238

    Article  PubMed  Google Scholar 

  3. Pattynama PM, De Roos A, Van der Wall EE, Van Voorthuisen AE (1994) Evaluation of cardiac function with magnetic resonance imaging. Am Heart J 128:595–607

    Article  CAS  PubMed  Google Scholar 

  4. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673–1680

    Article  PubMed  Google Scholar 

  5. Mordi I, Bezerra H, Carrick D, Tzemos N (2015) The combined incremental prognostic value of LVEF, late gadolinium enhancement, and global circumferential strain assessed by CMR. JACC Cardiovasc Imaging 8:540–549

    Article  PubMed  Google Scholar 

  6. Solomon SD, Anavekar N, Skali H et al (2005) Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation 112:3738–3744

    Article  PubMed  Google Scholar 

  7. Smedsrud MK, Pettersen E, Gjesdal O et al (2011) Detection of left ventricular dysfunction by global longitudinal systolic strain in patients with chronic aortic regurgitation. J Am Soc Echocardiogr 24:1253–1259

    Article  PubMed  Google Scholar 

  8. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging--a method for noninvasive assessment of myocardial motion. Radiology 169:59–63

    Article  CAS  PubMed  Google Scholar 

  9. Young AA, Axel L, Dougherty L, Bogen DK, Parenteau CS (1993) Validation of tagging with MR imaging to estimate material deformation. Radiology 188:101–108

    Article  CAS  PubMed  Google Scholar 

  10. Osman NF, Sampath S, Atalar E, Prince JL (2001) Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 46:324–334

    Article  CAS  PubMed  Google Scholar 

  11. Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Codreanu I, Pegg TJ, Selvanayagam JB et al (2014) Normal values of regional and global myocardial wall motion in young and elderly individuals using navigator gated tissue phase mapping. Age (Dordr) 36:231–241

    Article  Google Scholar 

  13. Osman NF, Kerwin WS, McVeigh ER, Prince JL (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42:1048–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Axel L, Dougherty L (1989) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845

    Article  CAS  PubMed  Google Scholar 

  15. Kuetting D, Sprinkart AM, Doerner J, Schild H, Thomas D (2015) Comparison of magnetic resonance feature tracking with harmonic phase imaging analysis (CSPAMM) for assessment of global and regional diastolic function. Eur J Radiol 84:100–107

    Article  CAS  PubMed  Google Scholar 

  16. Onishi T, Saha SK, Ludwig DR et al (2013) Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking. J Cardiovasc Magn Reson 15:95

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kempny A, Fernández-Jiménez R, Orwat S et al (2012) Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson 14:32

  18. Hor KN, Baumann R, Pedrizzetti G et al (2011) Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp. https://doi.org/10.3791/2356

  19. Collins JD (2015) Global and regional functional assessment of ischemic heart disease with cardiac MR imaging. Radiol Clin North Am 53:369–395

    Article  PubMed  Google Scholar 

  20. Onishi T, Saha SK, Delgado-Montero A et al (2015) Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2014.11.018

  21. Augustine D, Lewandowski AJ, Lazdam M et al (2013) Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 15:8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lamacie MM, Thavendiranathan P, Hanneman K et al (2017) Quantification of global myocardial function by cine MRI deformable registration-based analysis: comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol 27:1404–1415

    Article  PubMed  Google Scholar 

  23. Keller EJ, Fang S, Lin K et al (2017) The consistency of myocardial strain derived from heart deformation analysis. Int J Cardiovasc Imaging 33:1169–1177

    Article  PubMed  Google Scholar 

  24. Doesch C, Papavassiliu T, Michaely HJ et al (2013) Detection of myocardial ischemia by automated, motion-corrected, color-encoded perfusion maps compared with visual analysis of adenosine stress cardiovascular magnetic resonance imaging at 3 T: a pilot study. Invest Radiol 48:678–686

    Article  CAS  PubMed  Google Scholar 

  25. Jolly MP, Jordan JH, Meléndez GC, McNeal GR, D'Agostino RB Jr, Hundley WG (2017) Automated assessments of circumferential strain from cine CMR correlate with LVEF declines in cancer patients early after receipt of cardio-toxic chemotherapy. J Cardiovasc Magn Reson 19:59

    Article  PubMed  PubMed Central  Google Scholar 

  26. Osman NF, McVeigh ER, Prince JL (2000) Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging 19:186–202

    Article  CAS  PubMed  Google Scholar 

  27. Castillo E, Osman NF, Rosen BD et al (2005) Quantitative assessment of regional myocardial function with MR-tagging in a multi-center study: interobserver and intraobserver agreement of fast strain analysis with harmonic phase (HARP) MRI. J Cardiovasc Magn Reson 7:783–791

    Article  PubMed  Google Scholar 

  28. Simpson RM, Keegan J, Firmin DN (2013) MR assessment of regional myocardial mechanics. J Magn Reson Imaging 37:576–599

    Article  PubMed  Google Scholar 

  29. Lu JC, Connelly JA, Zhao L, Agarwal PP, Dorfman AL (2014) Strain measurement by cardiovascular magnetic resonance in pediatric cancer survivors: validation of feature tracking against harmonic phase imaging. Pediatr Radiol 44:1070–1076

    Article  PubMed  Google Scholar 

  30. Hor KN, Gottliebson WM, Carson C et al (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151

    Article  PubMed  Google Scholar 

  31. Schuster A, Kutty S, Padiyath A et al (2011) Cardiovascular magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schuster A, Stahnke VC, Unterberg-Buchwald C et al (2015) Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility. Clin Radiol 70:989–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barreiro-Pérez M, Curione D, Symons R, Claus P, Voigt JU, Bogaert J (2018) Left ventricular global myocardial strain assessment comparing the reproducibility of four commercially available CMR-feature tracking algorithms. Eur Radiol. https://doi.org/10.1007/s00330-018-5538-4

  34. Hor KN, Wansapura J, Markham LW et al (2009) Circumferential strain analysis identifies strata of cardiomyopathy in Duchenne muscular dystrophy: a cardiac magnetic resonance tagging study. J Am Coll Cardiol 53:1204–1210

    Article  PubMed  PubMed Central  Google Scholar 

  35. Feisst A, Kuetting DLR, Dabir D et al (2018) Influence of observer experience on cardiac magnetic resonance strain measurements using feature tracking and conventional tagging. Int J Cardiol Heart Vasc 18:46–51

    PubMed  PubMed Central  Google Scholar 

  36. Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JA (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:55

    Article  PubMed  PubMed Central  Google Scholar 

  37. Venkatesh BA, Donekal S, Yoneyama K et al (2015) Regional myocardial functional patterns: quantitative tagged magnetic resonance imaging in an adult population free of cardiovascular risk factors: the multi-ethnic study of atherosclerosis (MESA). J Magn Reson Imaging 42:153–159

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Results of this study have in part been presented at RSNA 2017 (oral presentation).

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd J. Wintersperger.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Bernd J. Wintersperger.

Conflict of interest

The authors of this manuscript declare relationships with the following companies:

Bernd J. Wintersperger, Research Support Siemens Healthineers

Bernd J. Wintersperger, Speakers Honorarium Siemens Healthineers

Andreas Greiser, Employee Siemens Healthineers, Erlangen, Germany

Marie-Pierre Jolly, Employee (former, at time of study) Siemens Healthineers, Medical Imaging Technologies, Princeton, NJ, USA

The study was performed under a Master Research Agreement (MRA) between the University Health Network and Siemens Healthineers.

Statistics and biometry

One of the authors has significant statistical expertise (Dr. Thavendiranathan).

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• case-control study

• performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamacie, M.M., Houbois, C.P., Greiser, A. et al. Quantification of myocardial deformation by deformable registration–based analysis of cine MRI: validation with tagged CMR. Eur Radiol 29, 3658–3668 (2019). https://doi.org/10.1007/s00330-019-06019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-019-06019-9

Keywords

Navigation