Skip to main content
Log in

Radial diffusivity as an imaging biomarker for early diagnosis of non-demented amyotrophic lateral sclerosis

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To explore the sensitivity of potential DTI-based biomarkers in detecting microstructural changes for whole-brain white matter in early stage amyotrophic lateral sclerosis (ALS), analyze the relationship between the DTI indices and disease status, and further clarify potential brain regions for disease monitoring and clinical assessment.

Methods

Thirty-three non-demented ALS patients and 32 age- and gender-matched subjects participated in this study. DTI data were acquired via 3.0T MRI scanner. Maps of diffusion-related indices including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were obtained. Tract-based spatial statistics (TBSS) were used to investigate whole-brain white matter changes of each index. Correlation analyses between both brain-wide and volume-of-interest (VOI)-wide white matter alterations and clinical factors including ALSFRS-R scores, disease duration, and progression rate were performed.

Results

Compared to healthy subjects, ALS patients showed significantly increased RD, MD and reduced FA, mainly along the corticospinal tract (CST) and the body of corpus callosum (CC). Increases in RD were broader than decreases in FA, in CST of both hemispheres. Meanwhile, involvement of several extra-motor regions was also revealed by RD. Significant positive correlation between ALSFRS-R scores and FA, negative correlation between ALSFRS-R and RD were found in left CST.

Conclusions

RD may be the most sensitive biomarker for the detection of early demyelination of white matter. Both RD and FA may serve as objective biomarkers for disease severity assessment. CST may be the most affected brain region in non-demented ALS.

Key Points

• Changes in RD were broader than those in FA in bilateral CST.

• Involvement of extra-motor regions was uncovered by RD.

• FA and RD in CST were related to ALSFRS-R scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Axial diffusivity

ALS:

Amyotrophic lateral sclerosis

ALSFRS-R :

Revised ALS Functional Rating Scale

CC:

Corpus callosum

CST:

Corticospinal tract

FA:

Fractional anisotropy

FTD:

Frontotemporal dementia

HC:

Healthy controls

LMN:

Lower motor neurons

MD:

Mean diffusivity

PLIC:

Posterior limb of internal capsule

RD:

Radial diffusivity

TBSS:

Tract-based spatial statistics

UMN:

Upper motor neurons

VOI:

Volumes-of-interest

References

  1. van Es MA, Hardiman O, Chiò A et al (2017) Amyotrophic lateral sclerosis. Lancet 390:2084–2098

    Article  Google Scholar 

  2. Nzwalo H, de Abreu D, Swash M et al (2014) Delayed diagnosis in ALS: The problem continues. J Neurol Sci 343:173–175

    Article  Google Scholar 

  3. Huynh W, Simon NG, Grosskreutz J et al (2016) Assessment of the upper motor neuron in amyotrophic lateral sclerosis. Clin Neurophysiol 127:2643–2660

    Article  Google Scholar 

  4. Melhem ER (2017) MR Imaging Biomarkers in Amyotrophic Lateral Sclerosis. Acad Radiol 24:1185–1186

    Article  Google Scholar 

  5. Wang S, Melhem ER, Poptani H, Woo JH (2011) Neuroimaging in amyotrophic lateral sclerosis. Neurotherapeutics 8:63–71

    Article  Google Scholar 

  6. Eisen A, Kim S, Pant B (1992) Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve 15:219–224

    Article  CAS  Google Scholar 

  7. Williamson TL, Cleveland DW (1999) Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56

    Article  CAS  Google Scholar 

  8. Geevasinga N, Menon P, Özdinler PH et al (2016) Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 12:651–661

    Article  CAS  Google Scholar 

  9. Filippi M, Agosta F (2016) Does neuroinflammation sustain neurodegeneration in ALS? Neurology 87:2508–2509

    Article  Google Scholar 

  10. Senda J, Atsuta N, Watanabe H et al (2017) Structural MRI correlates of amyotrophic lateral sclerosis progression. J Neurol Neurosurg Psychiatry 88:901–907

    Article  Google Scholar 

  11. Ferraro PM, Agosta F, Riva N et al (2017) Multimodal structural MRI in the diagnosis of motor neuron diseases. Neuroimage Clin 16:240–247

    Article  Google Scholar 

  12. Alshikho MJ, Zürcher NR, Loggia ML et al (2016) Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis. Neurology 87:2554–2561

    Article  CAS  Google Scholar 

  13. Agosta F, Ferraro PM, Riva N et al (2016) Structural brain correlates of cognitive and behavioral impairment in MND. Hum Brain Mapp 37:1614–1626

    Article  Google Scholar 

  14. Chiò A, Pagani M, Agosta F et al (2014) Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 13:1228–1240

    Article  Google Scholar 

  15. Foerster BR, Welsh RC, Feldman EL (2013) 25 years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol 9:513–524

    Article  Google Scholar 

  16. Cirillo M, Esposito F, Tedeschi G et al (2012) Widespread Microstructural White Matter Involvement in Amyotrophic Lateral Sclerosis: A Whole-Brain DTI Study. AJNR Am J Neuroradiol 33:1102–1108

    Article  CAS  Google Scholar 

  17. DSc PMCK, PhD SV, MBiostat BCC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    Article  Google Scholar 

  18. Mitchell JD, Callagher P, Gardham J et al (2010) Timelines in the diagnostic evaluation of people with suspected amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)--a 20-year review: can we do better? Amyotroph Lateral Scler 11:537–541

    Article  Google Scholar 

  19. Menke RAL, Körner S, Filippini N et al (2014) Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain 137:2546–2555

    Article  Google Scholar 

  20. Müller H-P, Turner MR, Grosskreutz J et al (2016) A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 87:570–579

    Google Scholar 

  21. Keil C, Prell T, Peschel T et al (2012) Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. BMC Neurosci 13:141

    Article  Google Scholar 

  22. Martin AR, Aleksanderek I, Cohen-Adad J et al (2016) Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin 10:192–238

    Article  Google Scholar 

  23. Cardenas-Blanco A, Machts J, Acosta-Cabronero J et al (2016) Structural and diffusion imaging versus clinical assessment to monitor amyotrophic lateral sclerosis. Neuroimage Clin 11:408–414

    Article  Google Scholar 

  24. Ellis CM, Simmons A, Jones DK et al (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    Article  CAS  Google Scholar 

  25. Prell T, Peschel T, Hartung V et al (2013) Diffusion tensor imaging patterns differ in bulbar and limb onset amyotrophic lateral sclerosis. Clin Neurol Neurosurg 115:1281–1287

    Article  Google Scholar 

  26. Filippini N, Douaud G, Mackay CE et al (2010) Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75:1645–1652

    Article  CAS  Google Scholar 

  27. Chapman MC, Jelsone-Swain L, Johnson TD et al (2014) Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. J Magn Reson Imaging 39:641–647

    Article  Google Scholar 

  28. Brooks BR, Miller RG, Swash M et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  Google Scholar 

  29. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21

    Article  CAS  Google Scholar 

  30. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    Article  Google Scholar 

  31. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  Google Scholar 

  32. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44:83–98

    Article  Google Scholar 

  33. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 15:456–467

    Article  Google Scholar 

  34. Basser PJ (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333–344

    Article  CAS  Google Scholar 

  35. Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  Google Scholar 

  36. Song S-K, Sun S-W, Ramsbottom MJ et al (2002) Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water. Neuroimage 17:1429–1436

    Article  Google Scholar 

  37. Song S-K, Yoshino J, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26:132–140

    Article  Google Scholar 

  38. Song S-K, Sun S-W, Ju W-K et al (2003) Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20:1714–1722

    Article  Google Scholar 

  39. Smith MC (1960) NERVE FIBRE DEGENERATION IN THE BRAIN IN AMYOTROPHIC LATERAL SCLEROSIS. J Neurol Neurosurg Psychiatry 23:269–282

    Article  CAS  Google Scholar 

  40. Hayashi Y, Nagashima K, Urano Y, Iwata M (1986) Spinocerebellar degeneration with prominent involvement of the motor neuron system: autopsy report of a sporadic case. Acta Neuropathol 70:82–85

    Article  CAS  Google Scholar 

  41. Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206

    Article  Google Scholar 

  42. Kang SH, Li Y, Fukaya M et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579

    Article  CAS  Google Scholar 

  43. Lee Y, Morrison BM, Li Y et al (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–448

    Article  CAS  Google Scholar 

  44. Metwalli NS, Benatar M, Nair G et al (2010) Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res 1348:156–164

    Article  CAS  Google Scholar 

  45. Schuster C, Elamin M, Hardiman O, Bede P (2016) The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. Eur J Neurol 23:1361–1371

    Article  CAS  Google Scholar 

  46. Balendra R, Jones A, Jivraj N et al (2014) Estimating clinical stage of amyotrophic lateral sclerosis from the ALS Functional Rating Scale. Amyotroph Lateral Scler Frontotemporal Degener 15:279–284

    Article  Google Scholar 

  47. Philips T, Rothstein JD (2014) Glial cells in amyotrophic lateral sclerosis. Exp Neurol 262:111–120

    Article  CAS  Google Scholar 

  48. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  CAS  Google Scholar 

  49. Salvadores N, Sanhueza M, Manque P, Court FA (2017) Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Front Neurosci 11:90–21

    Article  Google Scholar 

  50. Sarica A, Cerasa A, Valentino P et al (2016) The corticospinal tract profile in amyotrophic lateral sclerosis. Hum Brain Mapp 38:727–739

    Article  Google Scholar 

  51. Alruwaili AR, Pannek K, Coulthard A et al (2018) A combined tract-based spatial statistics and voxelbased morphometry study of the first MRI scan after diagnosis of amyotrophic lateral sclerosis with subgroup analysis. J Neuroradiol 45:41–48

    Article  CAS  Google Scholar 

  52. Christidi F, Karavasilis E, Riederer F et al (2017) Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis. Brain Imaging Behav 35:2639–2617

    Google Scholar 

  53. Qiu D, Tan L-H, Zhou K, Khong P-L (2008) Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: Voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development. Neuroimage 41:223–232

    Article  Google Scholar 

  54. Imfeld A, Oechslin MS, Meyer M et al (2009) White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. Neuroimage 46:600–607

    Article  Google Scholar 

  55. Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  Google Scholar 

  56. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  CAS  Google Scholar 

  57. Vos SB, Jones DK, Jeurissen B et al (2012) The influence of complex white matter architecture on the mean diffusivity in diffusion tensor MRI of the human brain. Neuroimage 59:2208–2216

    Article  Google Scholar 

  58. Tang YY, Lu Q, Fan M et al (2012) Mechanisms of white matter changes induced by meditation. Proc Natl Acad Sci U S A 109:10570–10574

    Article  CAS  Google Scholar 

  59. Baldaranov D, Khomenko A, Kobor I et al (2017) Longitudinal Diffusion Tensor Imaging-Based Assessment of Tract Alterations: An Application to Amyotrophic Lateral Sclerosis. Front Hum Neurosci 11:567

    Article  Google Scholar 

  60. Welniarz Q, Dusart I, Roze E (2017) The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol 77:810–829

    Article  Google Scholar 

  61. Seo JP, Jang SH (2013) Different characteristics of the corticospinal tract according to the cerebral origin: DTI study. AJNR Am J Neuroradiol 34:1359–1363

    Article  CAS  Google Scholar 

  62. Verstraete E, Polders DL, Mandl RCW et al (2014) Multimodal tract-based analysis in ALS patients at 7T: A specific white matter profile? Amyotroph Lateral Scler Frontotemporal Degener 15:84–92

    Article  Google Scholar 

  63. Sach M (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350

    Article  Google Scholar 

  64. Sage CA, Van Hecke W, Peeters R et al (2009) Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: Revisited. Hum Brain Mapp 30:3657–3675

    Article  Google Scholar 

  65. Cosottini M, Giannelli M, Siciliano G et al (2005) Diffusion-Tensor MR Imaging of Corticospinal Tract in Amyotrophic Lateral Sclerosis and Progressive Muscular Atrophy. Radiology 237:258–264

    Article  Google Scholar 

  66. Kwan JY, Meoded A, Danielian LE et al (2012) Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clin 2:151–160

    Article  Google Scholar 

  67. Bastin ME, Pettit LD, Bak TH et al (2013) Quantitative tractography and tract shape modeling in amyotrophic lateral sclerosis. J Magn Reson Imaging 38:1140–1145

    Article  Google Scholar 

  68. Ciccarelli O, Behrens TE, Johansen-Berg H et al (2009) Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics. Hum Brain Mapp 30:615–624

    Article  Google Scholar 

  69. Iwata NK, Kwan JY, Danielian LE et al (2011) White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain 134:2642–2655

    Article  Google Scholar 

  70. Kasper E, Schuster C, Machts J et al (2014) Microstructural White Matter Changes Underlying Cognitive and Behavioural Impairment in ALS – An In Vivo Study Using DTI. PLoS One 9:e114543–e114519

    Article  Google Scholar 

  71. Kilani M, Micallef J, Soubrouillard C et al (2004) A longitudinal study of the evolution of cognitive function and affective state in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Scler Other Motor Neuron Disord 5:46–54

    Article  CAS  Google Scholar 

  72. Lee D-H, Lee D-W, Han B-S (2016) Symmetrical Location Characteristics of Corticospinal Tract Associated With Hand Movement in the Human Brain. Medicine (Baltimore) 95:e3317–e3316

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank all patients with ALS and their families, as well as the healthy volunteers who kindly agreed to participate in the present study.

Funding

This study has received funding by the Scientific Research project supported by Huashan Hospital, Fudan University (2016QD15, 2016QD085), the Science and Technology Commission of Shanghai Municipality (16410722800, 17411953700), and the National Natural Science Foundation of China (81301203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoying Geng or Yuxin Li.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Yuxin Li.

Conflict of interest

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• retrospective

• diagnostic or prognostic study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Yang, L., Chen, Y. et al. Radial diffusivity as an imaging biomarker for early diagnosis of non-demented amyotrophic lateral sclerosis. Eur Radiol 28, 4940–4948 (2018). https://doi.org/10.1007/s00330-018-5506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5506-z

Keywords

Navigation