Skip to main content
Log in

Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The pathogenesis leading to poor functional outcome after aneurysmal subarachnoid haemorrhage (aSAH) is multifactorial and not fully understood. We evaluated a machine learning approach based on easily determinable clinical and CT perfusion (CTP) features in the course of patient admission to predict the functional outcome 6 months after ictus.

Methods

Out of 630 consecutive subarachnoid haemorrhage patients (2008–2015), 147 (mean age 54.3, 66.7% women) were retrospectively included (Inclusion: aSAH, admission within 24 h of ictus, CTP within 24 h of admission, documented modified Rankin scale (mRS) grades after 6 months. Exclusion: occlusive therapy before first CTP, previous aSAH, CTP not evaluable). A random forests model with conditional inference trees was optimised and trained on sex, age, World Federation of Neurosurgical Societies (WFNS) and modified Fisher grades, aneurysm in anterior vs. posterior circulation, early external ventricular drainage (EVD), as well as MTT and Tmax maximum, mean, standard deviation (SD), range, 75th quartile and interquartile range to predict dichotomised mRS (≤ 2; > 2). Performance was assessed using the balanced accuracy over the training and validation folds using 20 repeats of 10-fold cross-validation.

Results

In the final model, using 200 trees and the synthetic minority oversampling technique, median balanced accuracy was 84.4% (SD 0.7) over the training folds and 70.9% (SD 1.2) over the validation folds. The five most important features were the modified Fisher grade, age, MTT range, WFNS and early EVD.

Conclusions

A random forests model trained on easily determinable features in the course of patient admission can predict the functional outcome 6 months after aSAH with considerable accuracy.

Key Points

• Features determinable in the course of admission of a patient with aneurysmal subarachnoid haemorrhage (aSAH) can predict the functional outcome 6 months after the occurrence of aSAH.

• The top five predictive features were the modified Fisher grade, age, the mean transit time (MTT) range from computed tomography perfusion (CTP), the WFNS grade and the early necessity for an external ventricular drainage (EVD).

• The range between the minimum and the maximum MTT may prove to be a valuable biomarker for detrimental functional outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aSAH:

Aneurysmal subarachnoid haemorrhage

CTP:

CT perfusion

DCI:

Delayed cerebral ischaemia

EVD:

External ventricular drainage

GCS:

Glasgow coma scale

mRS:

Modified Rankin scale

MTT:

Mean transit time

SD:

Standard deviation

SMOTE:

Synthetic minority oversampling technique

WFNS:

World Federation of Neurosurgical Societies

References

  1. Feigin VL, Lawes CMM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    Article  Google Scholar 

  2. van Gijn J, Rinkel GJE (2001) Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124:249–278

    Article  Google Scholar 

  3. Rinkel GJE, Algra A (2011) Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol 10:349–356

    Article  Google Scholar 

  4. Fujii M, Yan J, Rolland WB et al (2013) Early brain injury, an evolving frontier in subarachnoid haemorrhage research. Transl Stroke Res 4:432–446

    Article  Google Scholar 

  5. Dreier JP (2011) The role of spreading depression, spreading depolarisation and spreading ischemia in neurological disease. Nat Med 17:439–447

    Article  CAS  Google Scholar 

  6. Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10:44–58

    Article  CAS  Google Scholar 

  7. Østergaard L, Aamand R, Karabegovic S et al (2013) The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab 33:1825–1837

    Article  Google Scholar 

  8. Rosen DS, Macdonald RL (2005) Subarachnoid hemorrhage grading scales: a systematic review. Neurocrit Care 2:110–118

    Article  Google Scholar 

  9. Takagi K, Tamura A, Nakagomi T et al (1999) How should a subarachnoid hemorrhage grading scale be determined? A combinatorial approach based solely on the Glasgow coma scale. J Neurosurg 90:680–687

    Article  CAS  Google Scholar 

  10. Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9

    Article  CAS  Google Scholar 

  11. Frontera JA, Claassen J, Schmidt JM et al (2006) Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified Fisher scale. Neurosurgery 59:21–27 discussion 21–7

    Article  Google Scholar 

  12. Etminan N, Beseoglu K, Heiroth H-J et al (2013) Early perfusion computerized tomography imaging as a radiographic surrogate for delayed cerebral ischemia and functional outcome after subarachnoid hemorrhage. Stroke 44:1260–1266

    Article  Google Scholar 

  13. Mathys C, Martens D, Reichelt DC et al (2013) Long-term impact of perfusion CT data after subarachnoid hemorrhage. Neuroradiology 55:1323–1331

    Article  Google Scholar 

  14. Caspers J, Rubbert C, Turowski B et al (2015) Timing of mean transit time maximization is associated with neurological outcome after subarachnoid hemorrhage. Clin Neuroradiol 27:15–22

    Article  Google Scholar 

  15. Diringer MN, Bleck TP, Claude Hemphill J 3rd et al (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference. Neurocrit Care 15:211–240

    Article  Google Scholar 

  16. Jaja BNR, Cusimano MD, Etminan N et al (2013) Clinical prediction models for aneurysmal subarachnoid hemorrhage: a systematic review. Neurocrit Care 18:143–153

    Article  Google Scholar 

  17. Turowski B, Schramm P (2015) An appeal to standardize CT- and MR-perfusion. Clin Neuroradiol 25:205–210

    Article  Google Scholar 

  18. Wittsack H-J, Wohlschläger AM, Ritzl EK et al (2008) CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition. Comput Med Imaging Graph 32:67–77

    Article  CAS  Google Scholar 

  19. Breiman L (2001) Random forests. Machine Learning 45:5–32

    Article  Google Scholar 

  20. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15:651–674

    Article  Google Scholar 

  21. Farrell B, Godwin J, Richards S, Warlow C (1991) The United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: final results. J Neurol Neurosurg Psychiatry 54:1044–1054

    Article  CAS  Google Scholar 

  22. Cremers CHP, Vos PC, van der Schaaf IC et al (2015) CT perfusion during delayed cerebral ischemia after subarachnoid hemorrhage: distinction between reversible ischemia and ischemia progressing to infarction. Neuroradiology 57:897–902

    Article  Google Scholar 

  23. Calamante F, Christensen S, Desmond PM et al (2010) The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI. Stroke 41:1169–1174

    Article  Google Scholar 

  24. Molinaro AM, Simon R, Pfeiffer RM (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21:3301–3307

    Article  CAS  Google Scholar 

  25. Velez DR, White BC, Motsinger AA et al (2007) A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 31:306–315

    Article  Google Scholar 

  26. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  27. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8:25

    Article  Google Scholar 

  28. Strobl C, Boulesteix A-L, Kneib T et al (2008) Conditional variable importance for random forests. BMC Bioinformatics 9:307

    Article  Google Scholar 

  29. de Toledo P, Rios PM, Ledezma A et al (2009) Predicting the outcome of patients with subarachnoid hemorrhage using machine learning techniques. IEEE Trans Inf Technol Biomed 13:794–801

    Article  Google Scholar 

  30. Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL (2007) Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 38:2315–2321

    Article  Google Scholar 

  31. Ransom ER, Mocco J, Komotar RJ et al (2007) External ventricular drainage response in poor grade aneurysmal subarachnoid hemorrhage: effect on preoperative grading and prognosis. Neurocrit Care 6:174–180

    Article  Google Scholar 

  32. Rodriguez-Régent C, Hafsa M, Turc G et al (2016) Early quantitative CT perfusion parameters variation for prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. Eur Radiol 26:2956–2963

    Article  Google Scholar 

  33. Murphy A, de Manoel AL O, Burgers K et al (2015) Early CT perfusion changes and blood-brain barrier permeability after aneurysmal subarachnoid hemorrhage. Neuroradiology 57:767–773

    Article  Google Scholar 

  34. Cremers CHP, van der Schaaf IC, Wensink E et al (2014) CT perfusion and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab 34:200–207

    Article  Google Scholar 

  35. Malinova V, Dolatowski K, Schramm P et al (2016) Early whole-brain CT perfusion for detection of patients at risk for delayed cerebral ischemia after subarachnoid hemorrhage. J Neurosurg 125:128–136

    Article  Google Scholar 

  36. Othman AE, Brockmann C, Yang Z et al (2015) Effects of radiation dose reduction in volume perfusion CT imaging of acute ischemic stroke. Eur Radiol 25:3415–3422

    Article  Google Scholar 

  37. Othman AE, Afat S, Brockmann C et al (2017) Low-dose volume-perfusion CT of the brain: effects of radiation dose reduction on performance of perfusion CT algorithms. Clin Neuroradiol 27:311–318

    Article  CAS  Google Scholar 

  38. Othman AE, Afat S, Brockmann MA et al (2016) Radiation dose reduction in perfusion CT imaging of the brain: a review of the literature. J Neuroradiol 43:1–5

    Article  Google Scholar 

  39. Othman AE, Afat S, Nikoubashman O et al (2016) Volume perfusion CT imaging of cerebral vasospasm: diagnostic performance of different perfusion maps. Neuroradiology 58:787–792

    Article  Google Scholar 

  40. Zijlstra IA, Gathier CS, Boers AM et al (2016) Association of automatically quantified total blood volume after aneurysmal subarachnoid hemorrhage with delayed cerebral ischemia. AJNR Am J Neuroradiol 37:1588–1593

    Article  CAS  Google Scholar 

  41. Boers AM, Zijlstra IA, Gathier CS et al (2014) Automatic quantification of subarachnoid hemorrhage on noncontrast CT. AJNR Am J Neuroradiol 35:2279–2286

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Editing assistance of an earlier version of the manuscript: Bonnie Hami, M.A. (Cleveland, OH, USA).

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rubbert.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Christian Rubbert.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was waived by the institutional review board.

Ethical approval

Institutional review board approval was obtained.

Methodology

• retrospective

• cross-sectional study

• performed at one institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubbert, C., Patil, K.R., Beseoglu, K. et al. Prediction of outcome after aneurysmal subarachnoid haemorrhage using data from patient admission. Eur Radiol 28, 4949–4958 (2018). https://doi.org/10.1007/s00330-018-5505-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-018-5505-0

Keywords

Navigation