Skip to main content

Advertisement

Log in

Incidentally detected enhancing lesions found in breast MRI: analysis of apparent diffusion coefficient and T2 signal intensity significantly improves specificity

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the value of adding T2- and diffusion-weighted imaging (DWI) to the BI-RADS® classification in MRI-detected lesions.

Methods

This retrospective study included 112 consecutive patients who underwent 3.0T structural breast MRI with T2- and DWI on the basis of EUSOMA recommendations. Morphological and kinetic features, T2 signal intensity (T2 SI) and apparent diffusion coefficient (ADC) findings were assessed.

Results

Thirty-three (29.5 %) patients (mean age 57.0 ± 12.7 years) had 36 primarily MRI-detected incidental lesions of which 16 (44.4 %) proved to be malignant. No single morphological or kinetic feature was associated with malignancy. Both low T2 SI (P = 0.009) and low ADC values (≤0.87 × 10−3 mm2s−1, P < 0.001) yielded high specificity (80.0 %/80.0 %). The BI-RADS classification supplemented with information from DWI and T2-WI improved the diagnostic performance of the BI-RADS classification as sensitivity remained 100 % and specificity improved from 30 % to 65.0 %. The numbers of false positive lesions declined from 39 % (N = 14) to 19 % (N = 7).

Conclusion

MRI-detected incidental lesions may be challenging to characterize as they have few specific malignancy indicating features. The specificity of MRI can be improved by incorporating T2 SI and ADC values into the BI-RADS assessment.

Key Points

MRI-detected incidental lesions have few specific malignancy indicating features.

≥ 1 suspicious morphologic or kinetic feature may warrant biopsy.

T2 signal intensity and DWI assessment are feasible in primarily MRI-detected lesions.

T2 SI and DWI assessment improve the BI-RADS specificity in MRI-detected lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Teifke A, Lehr HA, Vomweg TW, Hlawatsch A, Thelen M (2003) Outcome analysis and rational management of enhancing lesions incidentally detected on contrast-enhanced MRI of the breast. AJR Am J Roentgenol 181:655–662

    Article  PubMed  Google Scholar 

  2. Brown J, Smith RC, Lee CH (2001) Incidental enhancing lesions found on MR imaging of the breast. AJR Am J Roentgenol 176:1249–1254

    Article  CAS  PubMed  Google Scholar 

  3. Peters NH, van Esser S, van den Bosch MA et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET—randomised controlled trial. Eur J Cancer 47:879–886

    Article  CAS  PubMed  Google Scholar 

  4. Gonzalez V, Sandelin K, Karlsson A, Åberg W, Löfgren L, Gabriela Iliescu G et al (2014) Preoperative MRI of the Breast (POMB) influences primary treatment in breast cancer: a prospective, randomized, multicenter study. World J Surg 38:1685–1693

    Article  PubMed  Google Scholar 

  5. Turnbull L, Brown S, Harvey I, Olivier C, Drew P, Napp V et al (2010) Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomised controlled trial. Lancet 375:563–571

    Article  PubMed  Google Scholar 

  6. Langer SA, Horst KC, Ikeda DM, Daniel BL, Kong CS, Dirbas FM (2005) Pathologic correlates of false positive breast magnetic resonance imaging findings: which lesions warrant biopsy? Am J Surg 190:633–640

    Article  PubMed  Google Scholar 

  7. Bluemke DA, Gatsonis CA, Chen MH, DeAngelis GA, DeBruhl N, Harms S et al (2004) Magnetic resonance imaging of the breast prior to biopsy. JAMA 292:2735–2742

    Article  CAS  PubMed  Google Scholar 

  8. Linda A, Zuiani C, Londero V, Bazzocchi M (2008) Outcome of initially only magnetic resonance mammography-detected findings with and without correlate at second-look sonography: distribution according to patient history of breast cancer and lesion size. Breast 17:51–57

    Article  PubMed  Google Scholar 

  9. LaTrenta LR, Menell JH, Morris EA, Abramson AF, Dershaw DD, Liberman L (2003) Breast lesions detected with MR imaging: utility and histopathologic importance of identification with US. Radiology 227:856–861

    Article  PubMed  Google Scholar 

  10. Morris EA, Comstock CE, Lee CH et al (2013) ACR BI-RADS® Magnetic Resonance Imaging. In: ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. Reston, VA, American College of Radiology

  11. Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220:13–30

    Article  CAS  PubMed  Google Scholar 

  12. Kuhl CK, Klaschik S, Mielcarek P, Gieseke J, Wardelmann E, Schild HH (1999) Do T2 weighted pulse sequences help with the differential diagnosis of enhancing lesions in dynamic breast MRI? J Magn Reson Imaging 9:187–196

    Article  CAS  PubMed  Google Scholar 

  13. Schnall MD, Blume J, Bluemke DA, DeAngelis GA, DeBruhl N, Harms S et al (2006) Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology 238:42–53

    Article  PubMed  Google Scholar 

  14. Fischer U, Kopka L, Grabbe E (1999) Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213:881–888

    Article  CAS  PubMed  Google Scholar 

  15. Baum F, Fischer U, Vosshenrich R, Grabbe E (2002) Classification of hypervascularized lesions in CE MR imaging of the breast. Eur Radiol 12:1087–1092

    Article  CAS  PubMed  Google Scholar 

  16. Tozaki M, Igarashi T, Matsushima S, Fukuda K (2005) High-spatial-resolution MR imaging of focal breast masses: interpretation model based on kinetic and morphological parameters. Radiat Med 23:43–50

    PubMed  Google Scholar 

  17. Ikeda DM, Hylton NM, Kinkel K, Hochman MG, Kuhl CK, Kaiser WA et al (2001) Development, standardization, and testing of a lexicon for reporting contrast-enhanced breast magnetic resonance imaging studies. J Magn Reson Imaging 13:889–895

    Article  CAS  PubMed  Google Scholar 

  18. Tilanus-Linthorst MM, Obdeijn IM, Bartels KC (2005) MARIBS study. Lancet 366:291–292

    Article  PubMed  Google Scholar 

  19. Baltzer PA, Dietzel M, Kaiser WA (2013) A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography. Eur Radiol 23:2051–2060

    Article  PubMed  Google Scholar 

  20. Yamaguchi K, Schacht D, Sennett CA, Newstead GM, Imaizumi T, Irie H et al (2013) Decision making for breast lesions initially detected at contrast-enhanced breast MRI. AJR Am J Roentgenol 201:1376–1385

    Article  PubMed  Google Scholar 

  21. Zhu Y, Zhang S, Liu P, Hong L, Xu Y, Yang WT (2012) Solitary intraductal papillomas of the breast: MRI features and differentiation from small invasive ductal carcinomas. Am J Roentgenol 199:936–942

    Article  Google Scholar 

  22. Partridge SC, Demartini WB, Kurland BF, Eby PR, White SW, Lehman CD (2010) Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI. J Magn Reson Imaging 31:562–570

    Article  PubMed  Google Scholar 

  23. Parsian S, Rahbar H, Allison KH, Demartini WB, Olson ML, Lehman CD, Partridge SC Nonmalignant breast lesions: ADCs of benign and high-risk subtypes assessed as false-positive at dynamic enhanced MR imaging. 265(3):696–706. doi:10.1148/radiol.12112672

  24. Arponen O, Sudah M, Masarwah A, Taina M, Rautiainen S, Könönen M et al (2015) Diffusion-weighted imaging in 3.0 Tesla breast MRI: diagnostic performance and tumor characterization using small subregions vs. whole tumor regions of interest. PLoS ONE 10:e0138702

    Article  CAS  PubMed  Google Scholar 

  25. Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 46:1296–1316

    Article  PubMed  Google Scholar 

  26. Rasband, WS. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014

  27. Lalkhen AG, McCluskey A (2008) Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain 8:221–223

    Article  Google Scholar 

  28. Ballesio L, Savelli S, Angeletti M, Porfiri LM, D’Ambrosio I, Maggi C et al (2009) Breast MRI: Are T2 IR sequences useful in the evaluation of breast lesions? Eur J Radiol 71:96–101

    Article  PubMed  Google Scholar 

  29. Yuen S, Uematsu T, Kasami M et al (2007) Breast carcinomas with strong high-signal intensity on T2-weighted MR images: pathological characteristics and differential diagnosis. J Magn Reson Imaging 25:502–510

    Article  PubMed  Google Scholar 

  30. El Khouli RH, Jacobs MA, Mezban SD, Huang P, Kamel IR, Macura KJ et al (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73

    Article  Google Scholar 

  31. Pinker K, Bickel H, Helbich TH, Gruber S, Dubsky P, Pluschnig U et al (2013) Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the “Breast Imaging Reporting and Data System” for multiparametric 3-T imaging of breast lesions. Eur Radiol 23:1791–1802

    Article  CAS  PubMed  Google Scholar 

  32. Baltzer PA, Dietzel M, Kaiser WA (2011) Nonmass lesions in magnetic resonance imaging of the breast: additional T2-weighted images improve diagnostic accuracy. J Comput Assist Tomogr 35:361–366

    Article  PubMed  Google Scholar 

  33. Abe H, Schmidt RA, Shah RN et al (2010) MR- directed (“Second-Look”) US examination for breast lesions detected initially on MRI: MR and sonographic findings. AJR Am J Roentgenol 194:370–377

    Article  PubMed  Google Scholar 

  34. Nunes LW, Schnall MD, Orel SG (2001) Update of breast MR imaging architectural interpretation model. Radiology 219:484–494

    Article  CAS  PubMed  Google Scholar 

  35. Mahoney MC, Gatsonis C, Hanna L, DeMartini WB, Lehman C (2012) Positive predictive value of BI-RADS MR imaging. Radiology 264:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  36. Partridge SC, Mullins CD, Kurland BF, Allain MD, DeMartini WB, Eby PR et al (2010) Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size. AJR Am J Roentgenol 194:1664–1673

    Article  PubMed  Google Scholar 

  37. Spick C, Pinker-Domenig K, Rudas M, Helbich TH, Baltzer PA (2014) MRI-only lesions: application of diffusion- weighted imaging obviates unnecessary MR-guided breast biopsies. Eur Radiol 24:1204–1210

    Article  PubMed  Google Scholar 

  38. Yabuuchi H, Matsuo Y, Sunami S, Kamitani T, Kawanami S, Setoguchi T et al (2011) Detection of non-palpable breast cancer in asymptomatic women by using unenhanced diffusion-weighted and T2-weighted MR imaging: comparison with mammography and dynamic contrast-enhanced MR imaging. Eur Radiol 21:11–17

    Article  PubMed  Google Scholar 

  39. Baltzer PA, Benndorf M, Dietzel M, Gajda M, Camara O, Kaiser WA (2010) Sensitivity and specificity of unenhanced MR mammography (DWI combined with T2-weighted TSE imaging, ueMRM) for the differentiation of mass lesions. Eur Radiol 20:1101–1110

    Article  PubMed  Google Scholar 

  40. Debald M, Abramian A, Nemes L, Döbler M, Kaiser C, Keyver-Paik MD et al (2015) Who may benefit from preoperative breast MRI? A single-center analysis of 1102 consecutive patients with primary breast cancer. Breast Cancer Res Treat 1

  41. Lim HI, Choi JH, Yang JH, Han BK, Lee JE, Lee SK et al (2010) Does pre-operative breast magnetic resonance imaging in addition to mammography and breast ultrasonography change the operative management of breast carcinoma? Breast Cancer Res Treat 119:163–167

    Article  PubMed  Google Scholar 

  42. Clauser P, Marcon M, Maieron M, Zuiani C, Bazzocchi M, Baltzer PA (2015) Is there a systematic bias of apparent diffusion coefficient (ADC) measurements of the breast if measured on different workstations? An inter- and intra-reader agreement study. Eur Radiol

  43. Giannotti E, Waugh S, Priba L, Davis Z, Crowe E, Vinnicombe S (2015) Assessment and quantification of sources of variability in breast apparent diffusion coefficient (ADC) measurements at diffusion weighted imaging. Eur J Radiol 84:1729–1736

    Article  CAS  PubMed  Google Scholar 

  44. Chen X, Li WL, Zhang YL, Wu Q, Guo YM, Bai ZL (2010) Meta-analysis of quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesions. BMC Cancer 10:693

    Article  PubMed  PubMed Central  Google Scholar 

  45. Belli G, Busoni S, Ciccarone A, Coniglio A, Esposito M et al (2015) Quality assurance multicenter comparison of different MR scanners for qualitative diffusion-weighted imaging. J Magn Reson Imaging 00:1–7

    Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Prof. Ritva Vanninen. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. Otso Arponen received an EVO grant from Kuopio University Hospital (https://www.psshp.fi/) and a grant from the Cancer Society of Finland (http://www.cancer.fi/en/). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. Tuomas Selander (Kuopio University Hospital) kindly provided statistical advice for this manuscript. Institutional review board approval was obtained. Written informed consent was waived by the chair of the hospital district for this study because of the clinical imaging protocols and retrospective nature of the analyses. Some study subjects or cohorts have been previously reported in the following paper: Arponen O, Sudah M, Masarwah A, Taina M, Rautiainen S, Könönen M, Sironen R, Kosma VM, Sutela A, Hakumäki J, Vanninen R. Diffusion-Weighted Imaging in 3.0 Tesla Breast MRI: Diagnostic Performance and Tumor Characterization Using Small Subregions vs. Whole Tumor Regions of Interest. Plos One. DOI: 10.1371/journal.pone.0138702. Methodology: retrospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otso Arponen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arponen, O., Masarwah, A., Sutela, A. et al. Incidentally detected enhancing lesions found in breast MRI: analysis of apparent diffusion coefficient and T2 signal intensity significantly improves specificity. Eur Radiol 26, 4361–4370 (2016). https://doi.org/10.1007/s00330-016-4326-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4326-2

Keywords

Navigation