Skip to main content
Log in

Comparison between visual grading and planimetric quantification of microvascular obstruction extent assessment in reperfused acute myocardial infarction

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Current methods for infarct size and microvascular obstruction (MVO) quantification by cardiac magnetic resonance (CMR) imaging rely on planimetry. This method is time-consuming. We sought to evaluate a direct assessment of MVO severity based on visual evaluation and to compare it to a reference method.

Methods

CMR was performed in 112 consecutive patients after reperfused myocardial infarction. MVO was estimated by direct visual assessment based on a three-grade severity scale (MVO 1, mild; MVO 2, moderate; MVO 3, severe) on late gadolinium-enhancement (LGE).

Results

MVO was present in 69 patients (61.6 %). Quantitative MVO extent significantly increased accordingly to visual MVO grading (p < 0.01). Correlation between visual grading and quantitative assessment was excellent (r = 0.92, IQR 0.88–0.95, p < 0.001). CMR inter- and intraobserver variability for visual MVO evaluation was low (κ = 0.93 and κ = 0.96, respectively), whereas quantitative MVO assessment suffered from moderate agreement (interobserver, bias = −0.81 ± 1.8 g LV; intraobserver, −0.83 ± 2.1 g LV). Visual evaluation was significantly faster than reference method (0.65 ± 0.37 vs. 10.2 ± 2.9 min, p < 0.0001).

Conclusions

MVO severity based on direct visual assessment on LGE images is feasible, rapid, reproducible and agrees very well with quantitative methods, with a very low inter- and intraobserver variability. Our approach could be used for routine evaluation in patients undergoing CMR after acute myocardial infarction.

Key Points

• Microvascular obstruction direct visual evaluation is feasible, rapid and highly reproducible.

• Microvascular obstruction direct visual evaluation correlates well with quantification by planimetry.

• Microvascular obstruction or no-reflow phenomenon is determined on late gadolinium-enhanced images.

• Cardiac MRI is useful for myocardial damage assessment after myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMR:

cardiovascular magnetic resonance

LGE:

late gadolinium enhancement

LV:

left ventricle

LVEDV:

left ventricle end-diastolic volume.

LVEF:

left ventricle ejection fraction

LVESV:

left ventricle end-systolic volume

MVO:

microvascular obstruction

PCI:

percutaneous coronary intervention

STEMI:

ST elevation myocardial infarction

SSFP:

steady-state free-precession

TIMI:

thrombolysis in myocardial infarction

TE:

echo time

TR:

repetition time

References

  1. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54(6):1496–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nijveldt R, Hofman MBM, Hirsch A et al (2009) Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology 250(2):363–370

    Article  PubMed  Google Scholar 

  3. Ito H, Maruyama A, Iwakura K et al (1996) Clinical implications of the ‘no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93(2):223–228

    Article  CAS  PubMed  Google Scholar 

  4. de Waha S, Desch S, Eitel I et al (2010) Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J 31(21):2660–2668

    Article  PubMed  Google Scholar 

  5. Kim HW, Farzaneh-Far A, Kim RJ (2009) Cardiovascular magnetic resonance in patients with myocardial infarction: current and emerging applications. J Am Coll Cardiol 55(1):1–16

    Article  PubMed  Google Scholar 

  6. de Waha S, Desch S, Eitel I et al (2012) Relationship and prognostic value of microvascular obstruction and infarct size in ST-elevation myocardial infarction as visualized by magnetic resonance imaging. Clin Res Cardiol 101(6):487–495

    Article  PubMed  Google Scholar 

  7. Klug G, Mayr A, Schenk S et al (2012) Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:46

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bogaert J, Kalantzi M, Rademakers F, Dymarkowski S, Janssens S (2007) Determinants and impact of microvascular obstruction in successfully reperfused ST-segment elevation myocardial infarction. Assessment by magnetic resonance imaging. Eur Radiol 17(10):2572–2580

    Article  PubMed  Google Scholar 

  9. Thygesen K, Alpert JS, White HD et al (2007) Universal definition of myocardial infarction. Circulation 116(22):2634–2653

    Article  PubMed  Google Scholar 

  10. Task Force on Myocardial Revascularization of the European Society of Cardiology, the European Association for Cardio-Thoracic Society, European Association for Percutaneous Cardiovascular Interventions et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31(20):2501–2555

    Article  Google Scholar 

  11. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  12. Małek ŁA, Śpiewak M, Kłopotowski M, Miśko J, Rużyłło W, Witkowski A (2012) The size does not matter – the presence of microvascular obstruction but not its extent corresponds to larger infarct size in reperfused STEMI. Eur J Radiol 81(10):2839–2843

    Article  PubMed  Google Scholar 

  13. Mahrholdt H, Wagner A, Holly TA et al (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106(18):2322–2327

    Article  CAS  PubMed  Google Scholar 

  14. Thiele H, Kappl MJE, Conradi S, Niebauer J, Hambrecht R, Schuler G (2006) Reproducibility of chronic and acute infarct size measurement by delayed enhancement-magnetic resonance imaging. J Am Coll Cardiol 47(8):1641–1645

    Article  PubMed  Google Scholar 

  15. Rogers WJ, Frederick PD, Stoehr E et al (2008) Trends in presenting characteristics and hospital mortality among patients with ST elevation and non-ST elevation myocardial infarction in the National Registry of Myocardial Infarction from 1990 to 2006. Am Heart J 156(6):1026–1034

    Article  PubMed  Google Scholar 

  16. Kim RJ, Albert TS, Wible JH et al (2008) Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117(5):629–637

    Article  PubMed  Google Scholar 

  17. Wu KC, Zerhouni EA, Judd RM et al (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97(8):765–772

    Article  CAS  PubMed  Google Scholar 

  18. Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94(12):3318–3326

    Article  CAS  PubMed  Google Scholar 

  19. Kramer CM, Rogers WJ, Theobald TM, Power TP, Petruolo S, Reichek N (1996) Remote noninfarcted region dysfunction soon after first anterior myocardial infarction. A magnetic resonance tagging study. Circulation 94(4):660–666

    Article  CAS  PubMed  Google Scholar 

  20. Engler RL, Schmid-Schonbein GW, Pavelec RS (1983) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111(1):98–111

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu KC (2012) CMR of microvascular obstruction and hemorrhage in myocardial infarction. J Cardiovasc Magn Reson 14:68

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rochitte CE, Lima JA, Bluemke DA et al (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98(10):1006–1014

    Article  CAS  PubMed  Google Scholar 

  23. Bekkers SAM, Backes W, Kim R et al (2009) Detection and characteristics of microvascular obstruction in reperfused acute myocardial infarction using an optimized protocol for contrast-enhanced cardiovascular magnetic resonance imaging. Eur Radiol 19(12):2904–2912

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gerber BL, Rochitte CE, Melin JA et al (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101(23):2734–2741

    Article  CAS  PubMed  Google Scholar 

  25. Wu KC, Kim RJ, Bluemke DA et al (1998) Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol 32(6):1756–1764

    Article  CAS  PubMed  Google Scholar 

  26. Taylor AJ, Al-Saadi N, Abdel-Aty H, Schulz-Menger J, Messroghli DR, Friedrich MG (2004) Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation 109(17):2080–2085

    Article  PubMed  Google Scholar 

  27. Lund GK, Stork A, Saeed M et al (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232(1):49–57

    Article  PubMed  Google Scholar 

  28. Judd RM, Lugo-Olivieri CH, Arai M et al (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92(7):1902–1910

    Article  CAS  PubMed  Google Scholar 

  29. Mather AN, Lockie T, Nagel E et al (2009) Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J Cardiovasc Magn Reson 11:33

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cochet A, Lalande A, Lorgis L et al (2010) Prognostic value of microvascular damage determined by cardiac magnetic resonance in non ST-segment elevation myocardial infarction: comparison between first-pass and late gadolinium-enhanced images. Invest Radiol 45(11):725–732

    Article  PubMed  Google Scholar 

  31. Nijveldt R, Beek AM, Hirsch A et al (2008) Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol 52(3):181–189

    Article  PubMed  Google Scholar 

  32. Sardella G, Mancone M, Bucciarelli-Ducci C et al (2009) Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size: the EXPIRA (thrombectomy with export catheter in infarct-related artery during primary percutaneous coronary intervention) prospective, randomized trial. J Am Coll Cardiol 53(4):309–315

    Article  PubMed  Google Scholar 

  33. Sirol M, Gzara H, Logeart D et al (2014) Impact of intramyocardial hemorrage on LV remodeling after ST-elevation myocardial infarction. J Cardiovasc Magn Reson 16(Suppl 1):P103

    Article  PubMed Central  Google Scholar 

  34. van Kranenburg M, Magro M, Thiele H et al (2014) Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging 7(9):930–939

    Article  PubMed  Google Scholar 

  35. Kandler D, Lucke C, Grothoff M et al (2014) The relation between hypointense core, microvascular obstruction and intramyocardial haemorrhage in acute reperfused myocardial infarction assessed by cardiac magnetic resonance imaging. Eur Radiol 24(12):3277–3288

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The scientific guarantor of this publication is Marc Sirol, MD, PhD. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work was supported in part by the French Minister of Education and Research PHRC (Projet de Recherche Clinique) PREGICA-MRI # P081116 and has been registered in ClinicalTrials.gov (NCT01113268). Dr. Etienne Gayat, MD from the Clinical Epidemiology and Biostatistics Department kindly provided statistical advice for this manuscript in addition to Prof Eric Vicaut from Unité de Recherche Clinique Saint Louis - Lariboisière - Fernand Widal University Hospital.

No complex statistical methods were necessary for this paper. Institutional review board approval was obtained on 2010, February; #12233 (Comités de protection des personnes (CPP)). Written informed consent was obtained for each patient included in the study (PREGICA-MRI # P081116). No study subjects or cohorts have been previously. Methodology: prospective, observational, performed at multiple institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Sirol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirol, M., Gzara, H., Gayat, E. et al. Comparison between visual grading and planimetric quantification of microvascular obstruction extent assessment in reperfused acute myocardial infarction. Eur Radiol 26, 2166–2175 (2016). https://doi.org/10.1007/s00330-015-4069-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-4069-5

Keywords

Navigation