Skip to main content
Log in

Apparent diffusion coefficient values of diffusion-weighted imaging for distinguishing focal pulmonary lesions and characterizing the subtype of lung cancer: a meta-analysis

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The potential performance of apparent diffusion coefficient (ADC) values for distinguishing malignant and benign pulmonary lesions, further characterizing the subtype of lung cancer was assessed.

Methods

PubMed, EMBASE, Cochrane Library, EBSCO, and three Chinese databases were searched to identify eligible studies on diffusion-weighted imaging (DWI) of focal pulmonary lesions. ADC values of malignant and benign lesions were extracted by lesion type and statistically pooled based on a linear mixed model. Further analysis for subtype of lung cancer was also performed. The methodological quality was assessed using the quality assessment of diagnostic accuracy studies tool.

Results

Thirty-four articles involving 2086 patients were included. Malignant pulmonary lesions have significantly lower ADC values than benign lesions [1.21 (95 % CI, 1.19–1.22) mm2/s vs. 1.76 (95 % CI, 1.72–1.80) mm2/s; P < 0.05]. There is a significant difference between ADC values of small cell lung cancer and non-small cell lung cancer (P < 0.05), while the differences were not significant among histological subtypes of lung cancer. The methodological quality was relatively high, and the data points from Begg’s test indicated that there was probably no obvious publication bias.

Conclusions

The ADC value is helpful for distinguishing malignant and benign pulmonary lesions and provides a promising method for differentiation of SCLC from NSCLC.

Key Points

This meta-analysis assesses the role of DWI in pulmonary lesions.

Differentiation and classification subtype of lung cancer is essential for treatment decision-making.

ADC values can help distinguish between malignant and benign lesions.

ADC values might help characterize the subtype of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  2. Stupp R, Monnerat C, Turrisi AT 3rd, Perry MC, Leyvraz S (2004) Small cell lung cancer: state of the art and future perspectives. Lung Cancer 45:105–117

    Article  PubMed  Google Scholar 

  3. Kim HS, Lee KS, Ohno Y, van Beek EJ, Biederer J (2014) PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. J Magn Reson Imaging. doi:10.1002/jmri.24776

    Google Scholar 

  4. Jeong YJ, Lee KS, Jeong SY et al (2005) Solitary pulmonary nodule: characterization with combined wash-in and washout features at dynamic multi-detector row CT. Radiology 237:675–683

    Article  PubMed  Google Scholar 

  5. Henschke CI, Yankelevitz DF, Naidich DP et al (2004) CT screening for lung cancer: suspiciousness of nodules according to size on baseline scans. Radiology 231:164–168

    Article  PubMed  Google Scholar 

  6. Uto T, Takehara Y, Nakamura Y et al (2009) Higher sensitivity and specificity for diffusion-weighted imaging of malignant lung lesions without apparent diffusion coefficient quantification. Radiology 252:247–254

    Article  PubMed  Google Scholar 

  7. Cheran SK, Nielsen ND, Patz EF Jr (2004) False-negative findings for primary lung tumors on FDG positron emission tomography: staging and prognostic implications. AJR Am J Roentgenol 182:1129–1132

    Article  PubMed  Google Scholar 

  8. Shim SS, Lee KS, Kim BT, Choi JY, Chung MJ, Lee EJ (2006) Focal parenchymal lung lesions showing a potential of false-positive and false-negative interpretations on integrated PET/CT. AJR Am J Roentgenol 186:639–648

    Article  PubMed  Google Scholar 

  9. Mori T, Nomori H, Ikeda K et al (2008) Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses - Comparison with positron emission tomography. J Thorac Oncol 3:358–364

    Article  PubMed  Google Scholar 

  10. Ohno Y, Koyama H, Onishi Y et al (2008) Non-small cell lung cancer: Whole-body MR examination for M-stage assessment - Utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248:643–654

    Article  PubMed  Google Scholar 

  11. Satoh S, Kitazume Y, Ohdama S, Kimula Y, Taura S, Endo Y (2008) Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roentgenol 191:464–470

    Article  PubMed  Google Scholar 

  12. Regier M, Schwarz D, Henes FO et al (2011) Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: Intraindividual comparison with multidetector computed tomography. J Med Imaging Radiat Oncol 55:266–274

    Article  PubMed  Google Scholar 

  13. Chen L, Zhang J, Chen Y et al (2014) Relationship between apparent diffusion coefficient and tumour cellularity in lung cancer. PLoS One 9:e99865

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yabuuchi H, Hatakenaka M, Takayama K et al (2011) Non-small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion-weighted MR imaging. Radiology 261:598–604

    Article  PubMed  Google Scholar 

  15. Chang Q, Wu N, Ouyang H, Huang Y (2012) Diffusion-weighted magnetic resonance imaging of lung cancer at 3.0 T: a preliminary study on monitoring diffusion changes during chemoradiation therapy. Clin Imaging 36:98–103

    Article  PubMed  Google Scholar 

  16. Wu LM, Xu JR, Hua J et al (2013) Can diffusion-weighted imaging be used as a reliable sequence in the detection of malignant pulmonary nodules and masses? Magn Reson Imaging 31:235–246

    Article  PubMed  Google Scholar 

  17. Chen L, Zhang J, Bao J et al (2013) Meta-analysis of diffusion-weighted MRI in the differential diagnosis of lung lesions. J Magn Reson Imaging 37:1351–1358

    Article  PubMed  Google Scholar 

  18. Wang M, Zhang W, Zhang N et al (2011) Diagnostic value of 3.0T magnetic resonance diffusion-weighted imaging in benign and malignant lung tumors. Acta Acad Med Jiangxi 51:14–19

    Google Scholar 

  19. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  21. Zhao X, Yao J (2011) The role of diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient on histologic diagnosis of lung cancer. J China Med Univ 40:449–451

    Google Scholar 

  22. Liu Z, Li C, Chen J et al (2008) Correlation between magnetic resonance diffusion-weighted imaging and cellular density in lung caner. BME Clin Med 12:474–477

    Google Scholar 

  23. Liu H, Zeng L, Wang A et al (2014) Preliminary study in differentiation of postobstructive consolidation from central lung carcinoma at 3.0T MRI. J Pract Radiol 30:1306–1309

    Google Scholar 

  24. Li W, Yu T, Xu K, Li D (2013) 3.0T MR diffusion-weighted imaging in diagnosis of pulmonary solid lesions: comparing with patholody. J Pract Radiol 29:1757–1761

    Google Scholar 

  25. Li F, Huang X, Qian H (2013) MR-DWI and ADC values for evaluating the effect of radiotherapy for early stage lung cancer. J Med Imagin 23:702–706

    Google Scholar 

  26. Kang H, Zhang W, Jin R, Chen J (2011) Comparison of whole-body diffusion-weighted magnetic resonance imaging and positron emission tomography in lung cancer. Radio Pract 26:286–289

    Google Scholar 

  27. Dong H, Jiang R, Fang W, Ma Z, Zhou M, Zhang W (2011) Diagnostic value of diffusion-weighted MR imaging and CT-guided biopsy in pulmonary benign and malignant lesion. J Chin Clin Med Imaging 22:268–271

    Google Scholar 

  28. Deng Q, Qiu W, Zhang P, Xu L, Wang X (2012) The value on distinguishing pulmonary malignant tumors from benign lesions by diffusion-weighted imaging. Chin J CT MRI 10:35–37

    Google Scholar 

  29. Chen G, Qu C, Zheng T et al (2013) Differentiation of pulmonary benign and malignant lesions with diffusion-weighted MR imaging. Radiol Pract 28:763–766

    Google Scholar 

  30. Cai C, Zhao S, Lin L (2011) The value of MR diffusion weilghted imaging with STIR-EPI sequence for differentiating benign from malignant pulmonary nodules. J Pract Med Imaging 12:358–361

    Google Scholar 

  31. Zhang J, Cui LB, Tang X et al (2014) DW MRI at 3.0 T versus FDG PET/CT for detection of malignant pulmonary tumors. Int J Cancer 134:606–611

    Article  PubMed  CAS  Google Scholar 

  32. Yang R-M, Li L, Wei X-H et al (2013) Differentiation of Central Lung Cancer from Atelectasis: Comparison of Diffusion-Weighted MRI with PET/CT. PLoS One 8:e60279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. H-w W, Cheng J-j X, J-r LQ, Ge X, Li L (2008) The preliminary study of MR diffusion weighted imaging with background body signal suppression on pulmonary diseases. Chin J Radiol 42:56–59

    Google Scholar 

  34. Wang LL, Lin J, Liu K et al (2014) Intravoxel incoherent motion diffusion-weighted MR imaging in differentiation of lung cancer from obstructive lung consolidation: comparison and correlation with pharmacokinetic analysis from dynamic contrast-enhanced MR imaging. Eur Radiol 24:1914–1922

    Article  PubMed  Google Scholar 

  35. Usuda K, Zhao XT, Sagawa M et al (2011) Diffusion-weighted imaging is superior to positron emission tomography in the detection and nodal assessment of lung cancers. Ann Thorac Surg 91:1689–1695

    Article  PubMed  Google Scholar 

  36. Usuda K, Sagawa M, Motono N et al (2014) Diagnostic performance of diffusion weighted imaging of malignant and benign pulmonary nodules and masses: comparison with positron emission tomography. Asian Pac J Cancer P 15:4629–4635

    Article  Google Scholar 

  37. Tondo F, Saponaro A, Stecco A, Lombardi M, Casadio C, Carriero A (2011) Role of diffusion-weighted imaging in the differential diagnosis of benign and malignant lesions of the chest-mediastinum. Radiol Med 116:720–733

    Article  PubMed  CAS  Google Scholar 

  38. Razek AA, Fathy A, Gawad TA (2011) Correlation of apparent diffusion coefficient value with prognostic parameters of lung cancer. J Comput Assist Tomogr 35:248–252

    Article  PubMed  Google Scholar 

  39. Qi LP, Zhang XP, Tang L, Sun YS, Wang N (2007) Diffusion-weighted MR imaging for differentiation diagnosis of central lung cancer from postobstructive lobar collapse-preliminary study. Chin J Med Imaging Technol 23:1486–1490

    Google Scholar 

  40. Matoba M, Tonami H, Kondou T et al (2007) Lung carcinoma: diffusion-weighted MR imaging - preliminary evaluation with apparent diffusion coefficient. Radiology 243:570–577

    Article  PubMed  Google Scholar 

  41. Li Z, Zhang T, Xu B et al (2010) Usefulness of DWI in the evaluation of pulmonary isolated lesions. Chinese-German J Clin Oncol 9:388–390

    Article  Google Scholar 

  42. Li W, Li D, Liu H et al (2011) 3.0T MR diffusion-weighted imaging: evaluating diagnosis potency of pulmonary solid benign lesions and malignant tumors and optimizing b value. Chin J Lung Cancer 14:853–857

    Google Scholar 

  43. Li F, Yu T, Li W et al (2012) Correlation of apparent diffusion coefficient with histologic type and grade of lung cancer. J Med Imaging 23:702–706

    Google Scholar 

  44. Koyama H, Ohno Y, Nishio M et al (2014) Diffusion-weighted imaging vs STIR turbo SE imaging: capability for quantitative differentiation of small-cell lung cancer from non-small-cell lung cancer. Br J Radiol 87:20130307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Koyama H, Ohno Y, Aoyama N et al (2010) Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas. Eur Radiol 20:790–800

    Article  PubMed  Google Scholar 

  46. Haidong L, Ying L, Tielian Y, Ning Y (2010) Usefulness of diffusion-weighted MR imaging in the evaluation of pulmonary lesions. Eur Radiol 20:807–815

    Article  Google Scholar 

  47. Gumustas S, Inan N, Akansel G, Ciftci E, Demirci A, Ozkara SK (2012) Differentiation of malignant and benign lung lesions with diffusion-weighted MR imaging. Radiol Oncol 46:106–113

    Article  PubMed  PubMed Central  Google Scholar 

  48. Deng QM, Qiu WJ, Zhou ZP, Shi ZS, Wang XF (2012) Value of b value in differential diagnosis of benign and malignant lung lesions with DWI. Chin J Med Imaging Technol 28:1537–1540

    Google Scholar 

  49. Chen LH, Chen YF, Zhang JQ, Wang WW, Xia YB, Wang J (2012) Application value of apparent diffusion coefficient in diagnosis of different histological subtypes of lung cancers. Chin J Med Imaging Technol 28:1541–1545

    CAS  Google Scholar 

  50. Bernardin L, Douglas N, Collins D et al (2014) Diffusion-weighted magnetic resonance imaging for assessment of lung lesions: repeatability of the apparent diffusion coefficient measurement. Eur Radiol 24:502–511

    Article  PubMed  CAS  Google Scholar 

  51. Baysal T, Mutlu DY, Yologlu S (2009) Diffusion-weighted magnetic resonance imaging in differentiation of postobstructive consolidation from central lung carcinoma. Magn Reson Imaging 27:1447–1454

    Article  PubMed  Google Scholar 

  52. Sinkus R, Van Beers BE, Vilgrain V, DeSouza N, Waterton JC (2012) Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer 48:425–431

    Article  PubMed  CAS  Google Scholar 

  53. Baba S, Isoda T, Maruoka Y et al (2014) Diagnostic and prognostic value of pretreatment SUV in 18F-FDG/PET in breast cancer: comparison with apparent diffusion coefficient from diffusion-weighted MR imaging. J Nucl Med 55:736–742

    Article  PubMed  CAS  Google Scholar 

  54. Thormer G, Otto J, Reiss-Zimmermann M et al (2012) Diagnostic value of ADC in patients with prostate cancer: influence of the choice of b values. Eur Radiol 22:1820–1828

    Article  PubMed  Google Scholar 

  55. Kuang F, Ren J, Zhong Q, Liyuan F, Huan Y, Chen Z (2013) The value of apparent diffusion coefficient in the assessment of cervical cancer. Eur Radiol 23:1050–1058

    Article  PubMed  Google Scholar 

  56. Santos MK, Elias J Jr, Mauad FM, Muglia VF, Trad CS (2011) Magnetic resonance imaging of the chest: current and new applications, with an emphasis on pulmonology. J Bras Pneumol 37:242–258

    Article  PubMed  Google Scholar 

  57. Lally BE, Urbanic JJ, Blackstock AW, Miller AA, Perry MC (2007) Small cell lung cancer: have we made any progress over the last 25 years? Oncologist 12:1096–1104

    Article  PubMed  Google Scholar 

  58. Collins LG, Haines C, Perkel R, Enck RE (2007) Lung cancer: diagnosis and management. Am Fam Physician 75:56–63

    PubMed  Google Scholar 

  59. Yabuuchi H, Murayama S, Sakai S et al (1999) Resected peripheral small cell carcinoma of the lung: computed tomographic-histologic correlation. J Thorac Imaging 14:105–108

    Article  PubMed  CAS  Google Scholar 

  60. Bradley JD, Dehdashti F, Mintun MA, Govindan R, Trinkaus K, Siegel BA (2004) Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J Clin Oncol 22:3248–3254

    Article  PubMed  Google Scholar 

  61. Delgado PI, Jorda M, Ganjei-Azar P (2000) Small cell carcinoma versus other lung malignancies: diagnosis by fine-needle aspiration cytology. Cancer 90:279–285

    Article  PubMed  CAS  Google Scholar 

  62. Mazzone P, Jain P, Arroliga AC, Matthay RA (2002) Bronchoscopy and needle biopsy techniques for diagnosis and staging of lung cancer. Clin Chest Med 23:137–158. ix

  63. Desprechins B, Stadnik T, Koerts G, Shabana W, Breucq C, Osteaux M (1999) Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR Am J Neuroradiol 20:1252–1257

    PubMed  CAS  Google Scholar 

  64. Kwee TC, Takahara T, Ochiai R et al (2010) Complementary roles of whole-body diffusion-weighted MRI and 18F-FDG PET: the state of the art and potential applications. J Nucl Med 51:1549–1558

    Article  PubMed  Google Scholar 

  65. Wang J, Takashima S, Takayama F et al (2001) Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology 220:621–630

    Article  PubMed  CAS  Google Scholar 

  66. Partridge SC, Mullins CD, Kurland BF et al (2010) Apparent diffusion coefficient values for discriminating benign and malignant breast MRI lesions: effects of lesion type and size. AJR Am J Roentgenol 194:1664–1673

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Zhiyun Jia. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. This study has received funding by National Natural Science Foundation of China (Grant No. 81271532, 81171456, and 30900378) and the Fundamental Research Funds for the Central Universities (Project No. 2015SCU04B09). No complex statistical methods were necessary for this paper. Institutional Review Board approval was not required because we only performed data analysis based on the published studies. Written informed consent was not required for this study because it is a meta-analysis based on the studies that have been published. Methodology: retrospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyun Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Jia, Z. & Deng, H. Apparent diffusion coefficient values of diffusion-weighted imaging for distinguishing focal pulmonary lesions and characterizing the subtype of lung cancer: a meta-analysis. Eur Radiol 26, 556–566 (2016). https://doi.org/10.1007/s00330-015-3840-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-015-3840-y

Keywords

Navigation