Skip to main content
Log in

Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

The aim of the study was to evaluate the diagnostic performance of diffusion-weighted imaging (DWI) for detection and subtype classification in pulmonary adenocarcinomas through comparison with short TI inversion recovery turbo spin-echo imaging sequence (STIR).

Methods

Thirty-two patients (mean age, 65.2 years) with 33 adenocarcinomas (mean diameter, 27.6 mm) were enrolled in this study. The detection rates of both sequences were compared. The ADC values on DWI and the contrast ratio (CR) between cancer and muscle on STIR were measured and those were compared across subtype classifications. Finally, ROC-based positive tests were performed to differentiate subtype classifications, and differentiation capabilities were compared.

Results

The DWI detection rate [85% (28/33)] was significantly lower than that of STIR [100% (33/33), P < 0.05]. The ADC values showed no significant difference regarding subtype classification; however, the CRs of bronchio-alveolar carcinomas (BACs) were significantly lower than those of other types (P < 0.05). When threshold values for differentiating BACs from others were adapted, the sensitivity and accuracy of DWI were significantly lower than those of STIR (P < 0.05). For differentiating adenocarcinomas with mixed subtypes from those with no BA component, there were no significant differences between the two sequences.

Conclusion

STIR is more sensitive for detection and subtype classification than DWI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vogt FM, Herborn CU, Hunold P, Lauenstein TC, Schröder T, Debatin JF, Barkhausen J (2004) HASTE MRI versus chest radiography in the detection of pulmonary nodules: comparison with MDCT. AJR Am J Roentgenol 183:71–78

    PubMed  Google Scholar 

  2. Kersjes W, Mayer E, Buchenroth M, Schunk K, Fouda N, Cagil H (1997) Diagnosis of pulmonary metastases with turbo-SE MR imaging. Eur Radiol 7:1190–1194

    Article  CAS  PubMed  Google Scholar 

  3. Kauczor HU, Kreitner KF (1999) MRI of the pulmonary parenchyma. Eur Radiol 9:1755–1764

    Article  CAS  PubMed  Google Scholar 

  4. Ohno Y, Hatabu H, Takenaka D, Adachi S, Kono M, Sugimura K (2002) Solitary pulmonary nodules: potential role of dynamic MR imaging in management initial experience. Radiology 224:503–511

    Article  PubMed  Google Scholar 

  5. Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, Sakuma T (2007) Lung carcinoma: diffusion-weighted MR imaging–preliminary evaluation with apparent diffusion coefficient. Radiology 243:570–577

    Article  PubMed  Google Scholar 

  6. Satoh S, Kitazume Y, Ohdama S, Kimula Y, Taura S, Endo Y (2008) Can malignant and benign pulmonary nodules be differentiated with diffusion-weighted MRI? AJR Am J Roentgenol 191:464–470

    Article  PubMed  Google Scholar 

  7. Abdel Razek AA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol 16:1468–1477

    Article  PubMed  Google Scholar 

  8. Nasu K, Kuroki Y, Nawano S, Kuroki S, Tsukamoto T, Yamamoto S, Motoori K, Ueda T (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130

    Article  PubMed  Google Scholar 

  9. Charles-Edwards EM, deSouza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143

    Article  PubMed  Google Scholar 

  10. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  11. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  Google Scholar 

  12. Szafer A, Zhong J, Gore JC (1995) Theoretical model for water diffusion in tissues. Magn Reson Med 33:697–712

    Article  CAS  PubMed  Google Scholar 

  13. Benveniste H, Hedlund LW, Johnson GA (1992) Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 23:746–754

    CAS  PubMed  Google Scholar 

  14. Ohno Y, Hatabu H, Takenaka D, Higashino T, Watanabe H, Ohbayashi C, Yoshimura M, Satouchi M, Nishimura Y, Sugimura K (2004) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology 231:872–879

    Article  PubMed  Google Scholar 

  15. Walker R, Kessar P, Blanchard R, Dimasi M, Harper K, DeCarvalho V, Yucel EK, Patriquin L, Eustace S (2000) Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 11:343–350

    Article  CAS  PubMed  Google Scholar 

  16. Koyama H, Ohno Y, Kono A, Takenaka D, Maniwa Y, Nishimura Y, Ohbayashi C, Sugimura K (2008) Quantitative and qualitative assessment of non-contrast-enhanced pulmonary MR imaging for management of pulmonary nodules in 161 subjects. Eur Radiol 18:2120–2131

    Article  PubMed  Google Scholar 

  17. Wiener JI, Chako AC, Merten CW, Gross S, Coffey EL, Stein HL (1986) Breast and axillary tissue MR imaging: correlation of signal intensities and relaxation times with pathologic findings. Radiology 160:299–305

    CAS  PubMed  Google Scholar 

  18. Fossel ET, Brodsky G, deLayre JL, Wilson RE (1983) Nuclear magnetic resonance for the differentiation of benign and malignant breast tissues and axillary lymph nodes. Ann Surg 198:541–545

    Article  CAS  PubMed  Google Scholar 

  19. Bottomley PA, Hardy CJ, Argersinger RE, Allen-Moore G (1987) A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med Phys 14:1–37

    Article  CAS  PubMed  Google Scholar 

  20. Noguchi M, Morikawa A, Kawasaki M, Matsuno Y, Yamada T, Hirohashi S, Kondo H, Shimosato Y (1995) Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 75:2844–2852

    Article  CAS  PubMed  Google Scholar 

  21. Aoki T, Tomoda Y, Watanabe H, Nakata H, Kasai T, Hashimoto H, Kodate M, Osaki T, Yasumoto K (2001) Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology 220:803–809

    Article  CAS  PubMed  Google Scholar 

  22. Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, Yamashita Y (2008) Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol 3:358–364

    Article  PubMed  Google Scholar 

  23. Svanholm H, Starklint H, Gundersen HJ, Fabricius J, Barlebo H, Olsen S (1989) Reproducibility of histomorphologic diagnoses with special reference to the kappa statistic. APMIS 97:689–698

    Article  CAS  PubMed  Google Scholar 

  24. Rosner BA (1986) Fundamentals of biostatistics. 2nd ed. Dexbury, Boston

  25. Schroeder T, Ruehm SG, Debatin JF, Ladd ME, Barkhausen J, Goehde SC (2005) Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. AJR Am J Roentgenol 185:979–984

    Article  PubMed  Google Scholar 

  26. Yi CA, Jeon TY, Lee KS, Lee JH, Seo JB, Kim YK, Chung MJ (2007) 3-T MRI: usefulness for evaluating primary lung cancer and small nodules in lobes not containing primary tumors. AJR Am J Roentgenol 189:386–392

    Article  PubMed  Google Scholar 

  27. Bruegel M, Gaa J, Woertler K, Ganter C, Waldt S, Hillerer C, Rummeny EJ (2007) MRI of the lung: value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. J Magn Reson Imaging 25:73–81

    Article  PubMed  Google Scholar 

  28. Herneth AM, Guccione S, Bednarski M (2003) Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45:208–213

    Article  PubMed  Google Scholar 

  29. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  CAS  PubMed  Google Scholar 

  30. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  31. Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, Momose M, Ishiyama T (2001) Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology 220:621–630

    Article  CAS  PubMed  Google Scholar 

  32. Kuriyama K, Seto M, Kasugai T, Higashiyama M, Kido S, Sawai Y, Kodama K, Kuroda C (1999) Ground-glass opacity on thin-section CT: value in differentiating subtypes of adenocarcinoma of the lung. AJR Am J Roentgenol 173:465–469

    CAS  PubMed  Google Scholar 

  33. Aoki T, Nakata H, Watanabe H, Nakamura K, Kasai T, Hashimoto H, Yasumoto K, Kido M (2000) Evolution of peripheral lung adenocarcinomas: CT findings correlated with histology and tumor doubling time. AJR Am J Roentgenol 174:763–768

    CAS  PubMed  Google Scholar 

  34. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Yoshikazu Kotani, M.D. and Yoshihiro Nishimura, M.D., Ph.D. (Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine); Yoshimasa Maniwa, M.D., Ph.D. (Division of Pulmonary Surgery, Hyogo Cancer Center); Hideaki Kawamitsu, B.S. (Division of Radiology, Kobe University Hospital) and Masahiko Fujii, M.D. (Department of Radiology, Kobe University Graduate School of Medicine) are acknowledged for their contribution to this work. This work was supported by Eizai and Philips Medical Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisanobu Koyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, H., Ohno, Y., Aoyama, N. et al. Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas. Eur Radiol 20, 790–800 (2010). https://doi.org/10.1007/s00330-009-1615-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-009-1615-z

Keywords

Navigation