Skip to main content
Log in

Chemical exchange saturation transfer MR imaging of Parkinson’s disease at 3 Tesla

  • Molecular Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson’s disease (PD) in patients at 3 Tesla.

Methods

Twenty-seven PD patients (17 men and 10 women; age range, 54–77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55–73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (−6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls.

Results

Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively).

Conclusions

CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD.

Key Points

Total CEST signal in substantia nigra decreased in PD patients

Protein-based CEST signals in basal ganglia increased in PD patients

CEST could assist with the non-invasive molecular diagnosis for PD patients

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APT:

amide proton transfer

CEST:

chemical exchange saturation transfer

FLAIR:

fluid-attenuated inversion recovery

H&Y:

Hoehn and Yahr

MTRasym :

magnetization transfer ratio asymmetry

NAWM:

normal-appearing white matter

PD:

Parkinson’s disease

References

  1. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  2. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86

    Article  PubMed  Google Scholar 

  4. Michell AW, Lewis SJG, Foltynie T, Barker RA (2004) Biomarkers and Parkinson’s disease. Brain 127:1693–1705

    Article  CAS  PubMed  Google Scholar 

  5. Seppi K, Poewe W (2010) Brain magnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes. Neuroimaging Clin N Am 20:29–55

    Article  PubMed  Google Scholar 

  6. Vernon AC, Ballard C, Modo M (2010) Neuroimaging for Lewy body disease: is the in vivo molecular imaging of alpha-synuclein neuropathology required and feasible? Brain Res Rev 65:28–55

    Article  PubMed  Google Scholar 

  7. Schocke MFH, Seppi K, Esterhammer R et al (2002) Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 58:575–580

    Article  CAS  PubMed  Google Scholar 

  8. Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang JJ, Lin WY, Lu CS et al (2011) Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology 261:210–217

    Article  PubMed  Google Scholar 

  10. Rossi M, Ruottinen H, Elovaara I et al (2010) Brain iron deposition and sequence characteristics in Parkinsonism comparison of SWI, T-2* Maps, T-2-weighted-, and FLAIR-SPACE. Investig Radiol 45:795–802

    Article  CAS  Google Scholar 

  11. Haller S, Badoud S, Nguyen D et al (2013) Differentiation between Parkinson disease and other forms of parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol 23:12–19

    Article  CAS  PubMed  Google Scholar 

  12. Tambasco N, Pelliccioli GP, Chiarini P et al (2003) Magnetization transfer changes of grey and white matter in Parkinson’s disease. Neuroradiology 45:224–230

    CAS  PubMed  Google Scholar 

  13. Anik Y, Iseri P, Demirci A, Komsuoglu S, Inan N (2007) Magnetization transfer ratio in early period of Parkinson disease. Acad Radiol 14:189–192

    Article  PubMed  Google Scholar 

  14. Morgen K, Sammer G, Weber L et al (2011) Structural brain abnormalities in patients with Parkinson disease: a comparative voxel-based analysis using T1-weighted MR imaging and magnetization transfer imaging. Am J Neuroradiol 32:2080–2086

    Article  CAS  PubMed  Google Scholar 

  15. Zhou J, van Zijl PC (2006) Chemical exchange saturation transfer imaging and spectroscopy. Progr NMR Spectr 48:109–136

    Article  CAS  Google Scholar 

  16. Vinogradov E, Sherry AD, Lenkinski RE (2013) CEST: from basic principles to applications, challenges and opportunities. J Magn Reson 229:155–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhou J, Payen J, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090

    Article  CAS  PubMed  Google Scholar 

  18. Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. van Buchem MA, Tofts PS (2000) Magnetization transfer imaging. Neuroimaging Clin N Am 10:771–788

    PubMed  Google Scholar 

  20. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64

    Article  CAS  PubMed  Google Scholar 

  21. Cai KJ, Haris M, Singh A et al (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kogan F, Singh A, Debrosse C et al (2013) Imaging of glutamate in the spinal cord using GluCEST. NeuroImage 77:262–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chan KWY, McMahon MT, Kato Y et al (2012) Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68:1764–1773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Walker-Samuel S, Ramasawmy R, Torrealdea F et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. doi:10.1038/nm.3252

    PubMed  Google Scholar 

  25. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jin T, Wang P, Zong XP, Kim SG (2012) Magnetic resonance imaging of the Amine-Proton EXchange (APEX) dependent contrast. NeuroImage 59:1218–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jia G, Abaza R, Williams JD et al (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33:647–654

    Article  PubMed  Google Scholar 

  28. Dula AN, Arlinghaus LR, Dortch RD et al (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70:216–224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128

    Article  PubMed  Google Scholar 

  30. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PCM (2007) Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab 27:1129–1136

    Article  PubMed  Google Scholar 

  31. Zhao X, Wen Z, Huang F et al (2011) Saturation power dependence of amide proton transfer image contrasts in human brain tumors and strokes at 3 T. Magn Reson Med 66:1033–1041

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kirik D, Rosenblad C, Burer C et al (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22:2780–2791

    CAS  PubMed  Google Scholar 

  33. Hodaie M, Neimat JS, Lozano AM (2007) The dopaminergic nigrostriatal system and Parkinson’s disease: molecular events in development, disease, and cell death, and new therapeutic strategies. Neurosurgery 60:17–28

    Article  PubMed  Google Scholar 

  34. Braak H, Sandmann-Keil D, Gai W, Braak E (1999) Extensive axonal Lewy neurites in Parkinson’s disease: a novel pathological feature revealed by alpha-synuclein immunocytochemistry. Neurosci Lett 265:67–69

    Article  CAS  PubMed  Google Scholar 

  35. Tong JC, Wong H, Guttman M et al (2010) Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 133:172–188

    Article  PubMed  Google Scholar 

  36. Wen Z, Hu S, Huang F et al (2010) MR imaging of high-grade brain tumors using endogenous protein and peptide-based contrast. NeuroImage 51:616–622

    Article  PubMed Central  PubMed  Google Scholar 

  37. Zhou J, Blakeley JO, Hua J et al (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60:842–849

    Article  PubMed Central  PubMed  Google Scholar 

  38. Zhou J, Hong X, Zhao X, Gao J-H, Yuan J (2013) APT-weighted and NOE-weighted image contrasts in glioma with different RF saturation powers based on magnetization transfer ratio asymmetry analyses. Magn Reson Med 70:320–327

    Article  CAS  PubMed  Google Scholar 

  39. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  40. Peden AH, Ironside JW (2012) Molecular pathology in neurodegenerative diseases. Curr Drug Targets 13:1548–1559

    Article  CAS  PubMed  Google Scholar 

  41. Keupp J, Baltes C, Harvey PR, van den Brink J (2011) Parallel RF transmission based MRI technique for highly sensitive detection of amide proton transfer in the human brain. Proc 19th Annual Meeting ISMRM, Montreal, Quebec, p 710

Download references

Acknowledgments

This study has received funding by the National Natural Science Foundation of China (812111480), the fund of the 12th Five-year Plan for National Science & Technology Supporting Program (2012BAI10B04) and the National Institutes of Health (R01EB009731, R01CA166171 and R01NS083425). The authors thank Dr. Michel Modo (University of Pittsburgh) and Dr. Yun Zhou and Dr. Arman Rahmim (Johns Hopkins University) for helpful discussion, and Ms. Mary McAllister for editorial assistance.

The scientific guarantor of this publication is Min Chen (Director of Department of Radiology). The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. No complex statistical methods were necessary for this paper. Institutional review board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. Methodology: retrospective, diagnostic or prognostic study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinyuan Zhou or Min Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Peng, S., Wang, R. et al. Chemical exchange saturation transfer MR imaging of Parkinson’s disease at 3 Tesla. Eur Radiol 24, 2631–2639 (2014). https://doi.org/10.1007/s00330-014-3241-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3241-7

Keywords

Navigation