Skip to main content

Advertisement

Log in

Dual-energy CT of the urinary tract

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

With the ability to provide structural- and material-specific information with single phase of image acquisition, dual-energy CT has several useful applications in urinary tract imaging such as evaluation of renal mass, CT urography, and characterization of urinary calculi. Although the underlying principle of dual-energy scanning is similar, there are several important differences in the currently available dual-energy scanners and the image processing algorithms used for these scanners. Knowledge of the principle of dual-energy data acquisition and image processing is essential to understand the advantages and limitations of dual-energy CT in urinary tract imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21(5):733–744

    Article  PubMed  CAS  Google Scholar 

  2. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  PubMed  CAS  Google Scholar 

  3. Kalender WA, et al. (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339

    Article  PubMed  CAS  Google Scholar 

  4. Fletcher JG, et al. (2009) Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin N Am 47(1):41–57

    Article  PubMed  Google Scholar 

  5. Johnson TR, et al. (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517

    Article  PubMed  Google Scholar 

  6. Brown CL, et al. (2009) Dual-energy CT iodine overlay technique for characterization of renal masses as cyst or solid: a phantom feasibility study. Eur Radiol 19(5):1289–1295

    Article  PubMed  CAS  Google Scholar 

  7. Graser A, et al. (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252(2):433–440

    Article  PubMed  Google Scholar 

  8. Primak AN, et al. (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447

    Article  PubMed  Google Scholar 

  9. Stolzmann P, et al. (2009) In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging 35:629–635

    Article  PubMed  Google Scholar 

  10. Stolzmann P, et al. (2010) Characterization of urinary stones with dual-energy CT: improved differentiation using a tin filter. Investig Radiol 45(1):1–6

    Article  Google Scholar 

  11. Takahashi N, et al. (2010) Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT. Radiology 256(1):184–190

    Article  PubMed  Google Scholar 

  12. Graser A et al. (2010) Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Investig Radiol 45(7):399-405

    Google Scholar 

  13. Karlo C, et al. (2011) Dual-energy CT with tin filter technology for the discrimination of renal lesion proxies containing blood, protein, and contrast-agent. An experimental phantom study. Eur Radiol 21(2):385–392

    Article  PubMed  Google Scholar 

  14. Park J, et al. (2012) Dual-energy computed tomography applications in uroradiology. Curr Urol Rep 13(1):55–62

    Article  PubMed  Google Scholar 

  15. Silva AC, et al. (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31(4):1031–1046 (discussion 1047–50)

    Article  PubMed  Google Scholar 

  16. Zhang D, Li X, Liu B (2011) Objective characterization of GE discovery CT750 HD scanner: gemstone spectral imaging mode. Med Phys 38(3):1178–1188

    Article  PubMed  Google Scholar 

  17. Li B, Yadava G, Hsieh J (2011) Quantification of head and body CTDI(VOL) of dual-energy x-ray CT with fast-kVp switching. Med Phys 38(5):2595–2601

    Google Scholar 

  18. Hidas G, et al. (2010) Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology 257(2):394–401

    Article  PubMed  Google Scholar 

  19. Vrtiska TJ, et al. (2010) Genitourinary applications of dual-energy CT. AJR Am J Roentgenol 194(6):1434–1442

    Article  PubMed  Google Scholar 

  20. Zou YU, Silver MD (2008) Analysis of fast kV-switching in dual energy CT using a pre-reconstruction decomposition technique. In: Hsieh J, Samei E (eds) Proceedings of SPIE: Medical Imaging, vol 6913, pp 691313-1–12

  21. Goodsitt MM, Christodoulou EG, Larson SC (2011) Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med Phys 38(4):2222–2232

    Article  PubMed  Google Scholar 

  22. Matsumoto K, et al. (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262

    Article  PubMed  Google Scholar 

  23. Maturen KE, et al. (2012) “Sweet spot” for endoleak detection: optimizing contrast to noise using low keV reconstructions from fast-switch kVp dual-energy CT. J Comput Assist Tomogr 36(1):83–87

    Article  PubMed  Google Scholar 

  24. Graser A, et al. (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19(1):13–23

    Article  PubMed  Google Scholar 

  25. Maturen KE, et al. (2011) Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging. J Comput Assist Tomogr 35(6):742–746

    Article  PubMed  Google Scholar 

  26. Neville AM, et al. (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259(1):173–183

    Article  PubMed  Google Scholar 

  27. Kaza RK, et al. (2011) Distinguishing enhancing from nonenhancing renal lesions with fast kilovoltage-switching dual-energy CT. AJR Am J Roentgenol 197(6):1375–1381

    Article  PubMed  Google Scholar 

  28. Mendonca PRS et al. (2010) Multi-material decomposition of spectral CT images. In: Proceedings of SPIE, pp 76221W–76221W-9

  29. Chandarana H, et al. (2011) Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol 196(6):W693–W700

    Article  PubMed  Google Scholar 

  30. Israel GM, Bosniak MA (2005) How I do it: evaluating renal masses. Radiology 236(2):441–450

    Article  PubMed  Google Scholar 

  31. Miller CM, et al. (2011) Effect of organ enhancement and habitus on estimation of unenhanced attenuation at contrast-enhanced dual-energy MDCT: concepts for individualized and organ-specific spectral iodine subtraction strategies. AJR Am J Roentgenol 196(5):W558–W564

    Article  PubMed  Google Scholar 

  32. Zech CJ, Arndt N, Becker CR, Staehler M, Reiser MF, Johnson TR (2010) Dual-Energy CT for Detection of Malignancy in Patients with Polycystic Kidney Disease. Presented at Radiological Society of North America 2011 Scientific Assembly and Annual Meeting, November 28–December 3, Chicago, IL

  33. Dillman JR, Caoili EM, Cohan RH (2007) Multi-detector CT urography: a one-stop renal and urinary tract imaging modality. Abdom Imaging 32(4):519–529

    Article  PubMed  Google Scholar 

  34. Takahashi N, et al. (2008) Dual-energy CT iodine-subtraction virtual unenhanced technique to detect urinary stones in an iodine-filled collecting system: a phantom study. AJR Am J Roentgenol 190(5):1169–1173

    Article  PubMed  Google Scholar 

  35. Moon JW, Park BK, Kim CK, Park SY (2011) Evaluation of virtual unenhanced CT obtained from dualenergy CT urography for detecting urinary stones. Br J Radiol [Epub ahead of print]

  36. Mangold S, Fenchel MC, Vuust M, Claussen CD, Heuschmid M, Krauss B, Ketelsen D, Tsiflikas I (2010) Virtual Nonenhanced Dual-Energy CT Urography with Tin Filter Technology: Detection of Urinary Calculi in Vivo in Comparison to True Nonenhanced CT Urography. Presented at Radiological Society of North America 2011 Scientific Assembly and Annual Meeting, November 28–December 3, Chicago, IL

  37. Wells SA, Caoili EM, Cohan RH, Kaza RK, Ellis JH, Platt JF (2010) The role of dual-energy CT (DECT) in CT urography (CTU). Presented at Radiological Society of North America 2010 Scientific Assembly and Annual Meeting; November 28–December 3, Chicago, IL

  38. Wang J, Qu M, Leng S, McCollough CH (2010) Differentiation of uric acid versus non-uric acid kidney stones in the presence of iodine using dual-energy CT. In: Samei E, Pelc NJ (eds) Proceedings of SPIE: Medical Imaging, vol 7622, pp 76223O–76223O-9

  39. Kambadakone AR, et al. (2010) New and evolving concepts in the imaging and management of urolithiasis: urologists’ perspective. Radiographics 30(3):603–623

    Article  PubMed  Google Scholar 

  40. Eliahou R, et al. (2010) Determination of renal stone composition with dual-energy computed tomography: an emerging application. Semin Ultrasound CT MR 31(4):315–320

    Article  PubMed  Google Scholar 

  41. Motley G, et al. (2001) Hounsfield unit density in the determination of urinary stone composition. Urology 58(2):170–173

    Article  PubMed  CAS  Google Scholar 

  42. Manglaviti G, et al. (2011) In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. AJR Am J Roentgenol 197(1):W76–W83

    Article  PubMed  Google Scholar 

  43. Qu M, Giselle J, Ramirez Giraldo J, Vrtiska TJ, Lieske JC, McCollough CH, Krambeck A, Liu Y (2011) In vivo discrimination of nonuric acid kidney stone types. Presented at Radiological Society of North America 2011 Scientific Assembly and Annual Meeting, November 28–December 3, Chicago, IL

  44. Qu M, et al. (2011) Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol 196(6):1279–1287

    Article  PubMed  Google Scholar 

  45. Joshi M, Langan D, Sahani DS, et al. (2010) Effective atomic number accuracy for kidney stone characterization using spectral CT. In: Samei E, Pelc NJ (eds) Proceedings of SPIE: Medical Imaging 2010, vol 7622, pp 76223K-1-12

  46. Kulkarni N, Pinho D, Desai GS, Eisner BH, Doyle M, Sahani DV (2011) Kidney stone detection and characterization on dual-energy CT under annual background radiation dose. Presented at Radiological Society of North America 2011 Scientific Assembly and Annual Meeting, November 28–December 3, Chicago, IL

  47. Thomas C, et al. (2009) Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol 19(6):1553–1559

    Article  PubMed  CAS  Google Scholar 

  48. Yu L, et al. (2009) Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med Phys 36(3):1019–1024

    Article  PubMed  Google Scholar 

  49. Yadava GK, Chandra N, Hsieh J (2011) Relative dose in dual energy fast-kVp switching and conventional kVp imaging: spatial frequency dependent noise characteristics and low contrast imaging. In: Pelc NJ, Samei E, Nishikawa RM (eds) Proceedings of SPIE: Medical Imaging, vol 7961, pp 79613R-1–7

  50. Ng J, Chandarana H, Megibow AJ (2012) Decreased radiation dose in abdominal-pelvic MDCT using dual source dual energy imaging: quantitative comparison in 84 patients. To be presented at 2012 American Roentegen Ray Society Annual Meeting, Vancouver, CA

  51. Hara AK, et al. (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193(3):764–771

    Article  PubMed  Google Scholar 

  52. Schindera ST, et al. (2011) Iterative reconstruction algorithm for abdominal multidetector CT at different tube voltages: assessment of diagnostic accuracy, image quality, and radiation dose in a phantom study. Radiology 260(2):454–462

    Article  PubMed  Google Scholar 

  53. Leng S, et al. (2011) Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy bin selection. Med Phys 38(9):4946–4957

    Article  PubMed  Google Scholar 

  54. Szczykutowicz TP, Chen G-H (2011) Radiation dose reduction in dual-energy CT using PICCS reconstruction. Presented at Radiological Society of North America 2011 Scientific Assembly and Annual Meeting; November 28–December 3, Chicago, IL

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi K. Kaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaza, R.K., Platt, J.F. & Megibow, A.J. Dual-energy CT of the urinary tract. Abdom Imaging 38, 167–179 (2013). https://doi.org/10.1007/s00261-012-9901-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-012-9901-7

Keyword

Navigation