Skip to main content
Log in

Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate CT aortography at reduced tube voltage and contrast medium dose while maintaining image quality through iterative reconstruction (IR).

Methods

The Institutional Review Board approved a prospective study of 48 patients who underwent follow-up CT aortography. We performed intra-individual comparisons of arterial phase images using 120 kVp (standard tube voltage) and 80 kVp (low tube voltage). Low-tube-voltage imaging was performed on a 320-detector CT with IR following injection of 40 ml of contrast medium. We assessed aortic attenuation, aortic attenuation gradient, image noise, contrast-to-noise ratio (CNR), volume CT dose index (CTDIvol), and figure of merit (FOM) of image noise and CNR. Two readers assessed images for diagnostic quality, image noise, and artefacts.

Results

The low-tube-voltage protocol showed 23–31 % higher mean aortic attenuation and image noise (both P < 0.01) than the standard-tube-voltage protocol, but no significant difference in the CNR and aortic attenuation gradients. The low-tube-voltage protocol showed a 48 % reduction in CTDIvol and an 80 % increase in FOM of CNR. Subjective diagnostic quality was similar for both protocols, but low-tube-voltage images showed greater image noise (P = 0.01).

Conclusions

Application of IR to an 80-kVp CT aortography protocol allows radiation dose and contrast medium reduction without affecting image quality.

Key Points

CT aortography at 80 kVp allows a significant reduction in radiation dose.

Addition of iterative reconstruction reduces image noise and improves image quality.

The injected contrast medium dose can be substantially reduced at 80 kVp.

Aortic enhancement is uniform despite a reduced volume of contrast medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AIDR:

adaptive iterative dose reduction

CNR:

contrast-to-noise ratio

CTA:

computed tomography angiography

ED:

effective dose

EVAR:

endovascular aortic repair

FBP:

filtered-back projection

FOM:

figure of merit

IR:

iterative reconstruction

ROI:

region of interest

PACS:

picture-archiving and communication system

References

  1. Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    Article  PubMed  Google Scholar 

  2. Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174

    Article  PubMed  Google Scholar 

  3. Kalra MK, Maher MM, Toth TL et al (2004) Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–657

    Article  PubMed  Google Scholar 

  4. Dewey M, Zimmermann E, Deissenrieder F et al (2009) Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation. Circulation 120:867–875

    Article  PubMed  Google Scholar 

  5. Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR (2010) A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 195:1095–1099

    Article  PubMed  Google Scholar 

  6. Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. Radiology 217:430–435

    Article  CAS  PubMed  Google Scholar 

  7. Kooiman J, Pasha SM, Zondag W et al (2012) Meta-analysis: serum creatinine changes following contrast enhanced CT imaging. Eur J Radiol 81:2554–2561

    Article  PubMed  Google Scholar 

  8. Marin D, Nelson RC, Schindera ST et al (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254:145–153

    Article  PubMed  Google Scholar 

  9. Goshima S, Kanematsu M, Nishibori H et al (2011) CT of the pancreas: comparison of anatomic structure depiction, image quality, and radiation exposure between 320-detector volumetric images and 64-detector helical images. Radiology 260:139–147

    Article  PubMed  Google Scholar 

  10. Gervaise A, Osemont B, Lecocq S et al (2012) CT image quality improvement using Adaptive Iterative Dose Reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301

    Article  PubMed  Google Scholar 

  11. Nakayama Y, Awai K, Funama Y et al (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol 187:W490–W497

    Article  PubMed  Google Scholar 

  12. Schindera ST, Graca P, Patak MA et al (2009) Thoracoabdominal-aortoiliac multidetector-row CT angiography at 80 and 100 kVp: assessment of image quality and radiation dose. Invest Radiol 44:650–655

    Article  PubMed  Google Scholar 

  13. Szucs-Farkas Z, Kurmann L, Strautz T, Patak MA, Vock P, Schindera ST (2008) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43:871–876

    Article  PubMed  Google Scholar 

  14. Paul NS, Blobel J, Prezelj E et al (2010) The reduction of image noise and streak artifact in the thoracic inlet during low dose and ultra-low dose thoracic CT. Phys Med Biol 55:1363–1380

    Article  CAS  PubMed  Google Scholar 

  15. Huda W, Magill D, He W (2011) CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys 38:1261–1265

    Article  PubMed  Google Scholar 

  16. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332

    Google Scholar 

  17. Schoellnast H, Tillich M, Deutschmann MJ, Deutschmann HA, Schaffler GJ, Portugaller HR (2004) Aortoiliac enhancement during computed tomography angiography with reduced contrast material dose and saline solution flush: influence on magnitude and uniformity of the contrast column. Invest Radiol 39:20–26

    Article  PubMed  Google Scholar 

  18. Brooks RA, Di Chiro G (1976) Statistical limitations in x-ray reconstructive tomography. Med Phys 3:237–240

    Article  CAS  PubMed  Google Scholar 

  19. Bae KT (2010) Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256:32–61

    Article  PubMed  Google Scholar 

  20. Kim DJ, Kim TH, Kim SJ et al (2008) Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 246:110–115

    Article  PubMed  Google Scholar 

  21. Wintersperger B, Jakobs T, Herzog P et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15:334–341

    Article  CAS  PubMed  Google Scholar 

  22. Prakash P, Kalra MK, Kambadakone AK et al (2010) Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 45:202–210

    Article  PubMed  Google Scholar 

  23. Sagara Y, Hara AK, Pavlicek W, Silva AC, Paden RG, Wu Q (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195:713–719

    Article  PubMed  Google Scholar 

  24. Singh S, Kalra MK, Hsieh J et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383

    Article  PubMed  Google Scholar 

  25. Tatsugami F, Matsuki M, Nakai G et al (2012) The effect of adaptive iterative dose reduction on image quality in 320-detector row CT coronary angiography. Br J Radiol 85:e378–e382

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe H, Kanematsu M, Miyoshi T et al (2010) Improvement of image quality of low radiation dose abdominal CT by increasing contrast enhancement. AJR Am J Roentgenol 195:986–992

    Article  PubMed  Google Scholar 

  27. Iezzi R, Cotroneo AR, Giammarino A, Spigonardo F, Storto ML (2011) Low-dose multidetector-row CT-angiography of abdominal aortic aneurysm after endovascular repair. Eur J Radiol 79:21–28

    Article  CAS  PubMed  Google Scholar 

  28. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate—pharmacokinetic analysis and experimental porcine model. Radiology 206:455–464

    CAS  PubMed  Google Scholar 

  29. Awai K, Hori S (2003) Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multidetector-row helical CT. Eur Radiol 13:2155–2160

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Chang Gung Medical Research Program (CMRPG1B0061). We acknowledge the assistance of the dedicated radiology staff at Chang Gung Memorial Hospital Linkou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Yu Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CM., Chu, SY., Hsu, MY. et al. Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose. Eur Radiol 24, 460–468 (2014). https://doi.org/10.1007/s00330-013-3027-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3027-3

Keywords

Navigation