Skip to main content
Log in

Tractography of lumbar nerve roots: initial results

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation.

Methods

Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images.

Results

FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p = 0.0001) and of the nerve roots of volunteers (p = 0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p = 0.0002) and in the nerve roots of volunteers (p = 0.04).

Conclusion

DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohnmeiss DD, Vanharanta H, Ekholm J (1997) Degree of disc disruption and lower extremity pain. Spine 22:1600–1605

    Article  PubMed  CAS  Google Scholar 

  2. Thelander U, Fagerlund M, Friberg S, Larsson S (1992) Straight leg raising test versus radiologic size, shape, and position of lumbar disc hernias. Spine 17:395–399

    Article  PubMed  CAS  Google Scholar 

  3. Mixter WJ, Barr JS (1934) Rupture of the intervertebral disc involvement of the spinal canal. N Eng J Med 211:210–215

    Article  Google Scholar 

  4. Ernst CW, Stadnik TW, Peeters E et al (2005) Prevalence of annular tears and disc herniations on MR images of the cervical spine in symptom free volunteers. Eur J Radiol 55:409–414

    Article  PubMed  CAS  Google Scholar 

  5. Jensen MC, Brant-Zawadzki MN, Obuchowski N et al (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73

    Article  PubMed  CAS  Google Scholar 

  6. Chen C, Cavanaugh JM, Song Z et al (2004) Effects of nucleus pulposus on nerve root neural activity, mechanosensitivity, axonal morphology, and sodium channel expression. Spine 29:17–25

    Article  PubMed  Google Scholar 

  7. Price SJ, Burnet NG, Donovan T et al (2003) Diffusion tensor imaging of brain tumours at 3 T: a potential tool for assessing white matter tract invasion? Clin Radiol 58:455–462

    Article  PubMed  CAS  Google Scholar 

  8. Mukherjee P (2005) Diffusion tensor imaging and fibre tractography in acute stroke. Neuroimaging Clin N Am 15:655–665

    Article  PubMed  Google Scholar 

  9. Cassol E, Ranjeva JP, Ibarrola D et al (2004) Diffusion tensor imaging in multiple sclerosis: a tool for monitoring changes in normal-appearing white matter. Mult Scler 10:188–196

    Article  PubMed  Google Scholar 

  10. Rose SE, Chalk JB, Janke AL et al (2006) Evidence of altered prefrontal thalamic circuitry in schizophrenia: an optimized diffusion MRI study. Neuroimage 32:16–22

    Article  PubMed  Google Scholar 

  11. Skorpil M, Karlsson M, Nordell A (2004) Peripheral nerve diffusion tensor imaging. Magn Reson Imaging 22:743–745

    Article  PubMed  Google Scholar 

  12. Meek MF, Stenekes MW, Hoogduin HM et al (2006) In vivo three-dimensional reconstruction of human median nerves by diffusion tensor imaging. Exp Neurol 198:479–482

    Article  PubMed  Google Scholar 

  13. Hiltunen J, Suortti T, Arvela S et al (2006) Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol 116:2315–2323

    Article  Google Scholar 

  14. Khalil C, Hancart C, Le Thuc V et al (2008) Diffusion tensor imaging and tractography of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18:2283–2291

    Article  PubMed  CAS  Google Scholar 

  15. Stein D, Neufeld A, Pasternak O et al (2009) Diffusion tensor imaging of the median nerve in healthy and carpal tunnel syndrome subjects. J Magn Reson Imaging 29:657–662

    Article  PubMed  Google Scholar 

  16. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  PubMed  CAS  Google Scholar 

  17. Westin CF, Maier SE, Mamata H et al (2002) Processing and visualization for diffusion tensor MRI. Med Image Anal 6:93–108

    Article  PubMed  Google Scholar 

  18. Xu D, Mori S, Solaiyappan M et al (2002) A framework for callosal fibre distribution analysis. Neuroimage 17:1131–1143

    Article  PubMed  Google Scholar 

  19. Corouge I, Fletcher PT, Joshi S et al (2006) Fiber Tract-Oriented Statistics for Quantitative Diffusion Tensor MRI Analysis. Med Image Anal 10:786–798

    Article  PubMed  Google Scholar 

  20. Gerig G, Gouttard S, Corouge I (2004) Analysis of brain white matter via fiber tract modeling. Conf Proc IEEE Eng Med Biol Soc 6:4421–4424

    PubMed  Google Scholar 

  21. Price RR, Axel L, Morgan T et al (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17:287–295

    Article  PubMed  CAS  Google Scholar 

  22. Tuchiya K, Imai M, Tateishi H et al (2007) Neurography of the spinal nerve roots by diffusion tensor scanning applying motion-probing gradients in six directions. Magn Reson Med Sci 6:1–5

    Article  Google Scholar 

  23. Tsuchiya K, Honya K, Yoshida M et al (2008) Demonstration of spinal cord and nerve root abnormalities by diffusion neurography. J Comput Assist Tomogr 32:286–290

    Article  PubMed  Google Scholar 

  24. Eguchi Y, Ohtori S, Yamashita M et al (2010) Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment. Eur Spine J 19:1874–82

    Article  PubMed  Google Scholar 

  25. Takahara T, Hendrikse J, Kwee TC et al (2010) Diffusion-weighted MR neurography of the sacral plexus with unidirectional motion probing gradients. Eur Radiol 20:1221–6

    Article  PubMed  Google Scholar 

  26. Vargas M, Viallon M, Nguyen D et al (2010) Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions. Neuroradiology 52:237–245

    Article  PubMed  Google Scholar 

  27. Filippi C, Andrews T, Gonyea J-V et al (2010) Magnetic resonance diffusion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord. Eur Radiol 20:2194–2199

    Article  PubMed  Google Scholar 

  28. Facon D, Ozanne A, Fillard P et al (2005) MR diffusion tensor imaging and fiber tracking in spinal cord compression. Am J Neuroradiol 26:1587–1594

    PubMed  Google Scholar 

  29. Van Hecke W, Leemans A, Sijbers J et al (2008) A tracking-based diffusion tensor imaging segmentation method for the detection of diffusion-related changes of the cervical spinal cord with aging. J Magn Reson Imaging 27:978–991

    Article  PubMed  Google Scholar 

  30. Ellingson BM, Ulmer JL, Kurpad SN et al (2008) Diffusion tensor MR imaging of the neurologically intact human spinal cord. Am J Neuroradiol 29:1279–1284

    Article  PubMed  CAS  Google Scholar 

  31. Olmarker K, Rydevik B (1991) Pathophysiology of sciatica. Orthop Clin North Am 22:223–234

    PubMed  CAS  Google Scholar 

  32. Takahashi N, Yabuki S, Aoki Y et al (2003) Pathomechanisms of nerve root injury caused by disc herniation: an experimental study of mechanical compression and chemical irritation. Spine 28:435–441

    PubMed  Google Scholar 

  33. Rydevik BL, Pedowitz RA, Hargens AR et al (1991) Effects of acute, graded compression on spinal nerve root function and structure. An experimental study of the pig cauda equina. Spine 16:487–493

    Article  PubMed  CAS  Google Scholar 

  34. Rydevik B, Brown MD, Lundborg G (1984) Pathoanatomy and pathophysiology of nerve root compression. Spine 9:7–15

    Article  PubMed  CAS  Google Scholar 

  35. Yoshizawa H, Kobayashi S, Morita T (1995) Chronic nerve root compression. Pathophysiologic mechanism of nerve root dysfunction. Spine 20:397–407

    Article  PubMed  CAS  Google Scholar 

  36. Beaulieu C, Does MD, Snyder RE et al (1996) Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631

    Article  PubMed  CAS  Google Scholar 

  37. Stanisz GJ, Midha R, Munro CA et al (2001) MR properties of rat sciatic nerve following trauma. Magn Reson Med 45:415–420

    Article  PubMed  CAS  Google Scholar 

  38. Takagi T, Nakamura M, Yamada M et al (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 44:884–892

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Hélène Tostain for English manuscript corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Balbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbi, V., Budzik, JF., Duhamel, A. et al. Tractography of lumbar nerve roots: initial results. Eur Radiol 21, 1153–1159 (2011). https://doi.org/10.1007/s00330-010-2049-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-2049-3

Keywords

Navigation