Skip to main content

Advertisement

Log in

Murine liver implantation of radiation-induced fibrosarcoma: characterization with MR imaging, microangiography and histopathology

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

We sought to establish and characterize a mouse liver tumor model as a platform for preclinical assessment of new diagnostics and therapeutics. Radiation-induced fibrosarcoma (RIF-1) was intrahepatically implanted in 27 C3H/Km mice. Serial in vivo magnetic resonance imaging (MRI) with a clinical 1.5-T-magnet was performed using T1- (T1WI), T2- (T2WI), and diffusion-weighted sequences (DWI), dynamic contrast-enhanced MRI (DCE-MRI), and contrast-enhanced T1WI, and validated with postmortem microangiography and histopathology. Implantation procedure succeeded in 25 mice with 2 deaths from overdosed anesthesia or hypothermia. RIF-1 grew in 21 mice with volume doubling time of 2.55±0.88 days and final size of 216.2±150.4 mm3 at day 14. Three mice were found without tumor growth and one only with abdominal seeding. The intrahepatic RIF-1 was hypervascularized with negligible necrosis as shown on MRI, microangiography and histology. On DCE-MRI, maximal initial slope of contrast-time curve and volume transfer constant per unit volume of tissue, K, differed between the tumor and liver with only the former significantly lower in the tumor than in the liver (P<0.05). Liver implantation of RIF-1 in mice proves a feasible and reproducible model and appears promising for use to screen new diagnostics and therapeutics under noninvasive monitoring even with a clinical MRI system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hann B, Balmain A (2001) Building ‘validated’ mouse models of human cancer. Curr Opin Cell Biol 13:778–784

    Article  CAS  PubMed  Google Scholar 

  2. Kerbel RS (1998) What is the optimal rodent model for anti-tumor drug testing? Cancer Metastasis Rev 17:301–304

    Article  PubMed  Google Scholar 

  3. Bhujwalla ZM, Tozer GM, Field SB et al (1990) The combined measurement of blood flow and metabolism in RIF-1 tumours in vivo. A study using H2 flow and 31P NMR spectroscopy. NMR Biomed 3:178–183

    CAS  Google Scholar 

  4. Chen HH, Le Visage C, Qiu B et al (2005) MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery. Magn Reson Med 53:614–620

    Article  CAS  PubMed  Google Scholar 

  5. Kim S-G, Ackerman JJH (1988) Quantitative determination of tumor blood flow and perfusion via deuterium nuclear magnetic resonance spectroscopy in mice. Cancer Res 48:3449–3453

    CAS  PubMed  Google Scholar 

  6. Robinson SP, van den Boogaart A, Maxwell RJ (1998) 31P-magnetic resonance spectroscopy and 2H-magnetic resonance imaging studies of a panel of early-generation transplanted murine tumour models. Br J Cancer 77:1752–1760

    CAS  PubMed  Google Scholar 

  7. Tailor DR, Poptani H, Glickson JD et al (2003) High-resolution assessment of blood flow in murine RIF-1 tumors by monitoring uptake of H2 17O with proton T-weighted imaging. Magn Reson Med 49:1–6

    Article  PubMed  Google Scholar 

  8. Twentyman PR, Brown JM, Gray JW et al (1980) A new mouse tumor model system (RIF-1) for comparison of end-point studies. J Natl Cancer Inst 64:595–604

    CAS  PubMed  Google Scholar 

  9. Chen F, Sun X, De Keyzer F et al (2006) Liver tumor model with implanted rhabdomyosarcoma in rats: MR imaging, microangiography, and histopathologic analysis. Radiology 239:554–562

    Article  PubMed  Google Scholar 

  10. Heijstek MW, Kranenburg O, Borel Rinkes IH (2005) Mouse models of colorectal cancer and liver metastases. Dig Surg 22:16–25

    Article  CAS  PubMed  Google Scholar 

  11. Rusciano D, Lorenzoni P, Burger M (1994) Murine models of liver metastasis. Invasion Metastasis 14:349–361

    PubMed  Google Scholar 

  12. Madhu B, Waterton JC, Griffiths JR (2006) The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy. Neoplasia 8:560–567

    Article  CAS  PubMed  Google Scholar 

  13. Takehara Y, Sakahara H, Masunaga H (2002) Assessment of a potential tumor-seeking manganese metalloporphyrin contrast agent in a mouse model. Magn Reson Med 47:549–553

    Article  CAS  PubMed  Google Scholar 

  14. Nomura K, Miyagawa S, Harada H (1998) Relationship between doubling time of liver metastases from colorectal carcinoma and residual primary cancer. Dig Surg 15:21–24

    Article  CAS  PubMed  Google Scholar 

  15. Tofts PS, Berkowitz BA (1993) Rapid measurement of capillary permeability using the early part of the dynamic Gd-DTPA MRI enhancement curve. J Magn Reson B 102:129–136

    Article  CAS  Google Scholar 

  16. Thoeny HC, De Keyzer F, Vandecaveye V (2005) Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 237:492–499

    Article  PubMed  Google Scholar 

  17. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  CAS  PubMed  Google Scholar 

  18. Pandharipande PV, Krinsky GA, Rusinek H et al (2005) Perfusion imaging of the liver: Current challenges and future goals. Radiology 234:661–673

    Article  PubMed  Google Scholar 

  19. Liu Y, Matsui O (2007) Changes of intratumoral microvessels and blood perfusion during establishment of hepatic metastases in mice. Radiology 243:386–395

    Article  PubMed  Google Scholar 

  20. Veenendaal LM, van Hillegersberg R, Smakman N et al (2006) Synergistic effect of interstitial laser coagulation and doxorubicin in a murine tumor recurrence model of solitary colorectal liver metastasis. Ann Surg Oncol 13:168–175

    Article  PubMed  Google Scholar 

  21. Van de Putte M, Wang H, Chen F, de Witte P, Ni Y (2008) Hypericin as a marker for determination of tissue viability after intratumoral ethanol injection in a murine liver tumor model. Academic Radiology 15(1):107–113

    Google Scholar 

  22. Van de Putte M, Wang H, Chen F, de Witte P, Ni Y (2008) Hypericin as a marker for determination of tissue viability after radiofrequency ablation in a murine liver tumor model. Oncology Reports 19, in press

  23. Bock NA, Konyer NB, Henkelman RM (2003) Multiple-mouse MRI. Magn Reson Med 49(1):158–167

    Article  PubMed  Google Scholar 

  24. Xu S, Gade TP, Matei C et al (2003) In vivo multiple-mouse imaging at 1.5 T. Magn Reson Med 49(3):551–557

    Article  CAS  PubMed  Google Scholar 

  25. Herneth AM, Guccione S, Bednarski M (2003) Apparent Diffusion Coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45:208–213

    Article  PubMed  Google Scholar 

  26. Crokart N, Jordan BF, Baudelet C et al (2005) Early reoxygenation in tumors after irradiation: Determining factors and consequences for radiotherapy regimens using daily multiple fractions. Int J Radiat Oncol Biol Phys 63:901–910

    CAS  PubMed  Google Scholar 

  27. Collins DJ, Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag 23:65–83

    Article  PubMed  Google Scholar 

  28. Tofts PS, Brix G, Buckley DL (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the grants awarded by Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO Vlaanderen) Impulsfinanciering project (ZWAP/05/018), Geconcerteerde Onderzoeksactie (GOA) of the Flemish Government, OT project (OT/06/70) MoSAIC, the K.U. Leuven Molecular Small Animal Imaging Center (KUL EF/05/08), and a EU project Asia-Link CfP 2006- EuropeAid/123738/C/ACT/Multi–proposal no. 128–498/111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Van de Putte, M., Chen, F. et al. Murine liver implantation of radiation-induced fibrosarcoma: characterization with MR imaging, microangiography and histopathology. Eur Radiol 18, 1422–1430 (2008). https://doi.org/10.1007/s00330-008-0904-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0904-2

Keywords

Navigation