Skip to main content
Log in

Vertebral morphometry: current methods and recent advances

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Vertebral fractures are the hallmark of osteoporosis and are associated with increased morbility and mortality. Because a majority of vertebral fractures often occur in absence of specific trauma and are asymptomatic, their identification is radiographic. The two most widely used methods to determine the severity of vertebral fractures are the visual semiquantitative (SQ) assessment and the morphometric quantitative approach, involving the measurements of vertebral body heights. The measurements may be made on conventional spinal radiographs (MRX: morphometric X-ray radiography) or on images obtained from dual X-ray absorptiometry (DXA) scans (MXA: morphometric X-ray absorptiometry).The availability of a rapid, low-dose method for assessment of vertebral fractures, using advanced fan-beam DXA devices, provides a practical method for integrated assessment of BMD and vertebral fracture status. The visual or morphometric assessment of lateral DXA spine images may have a potential role for use as a prescreening tool, excluding normal subjects prior to performing conventional radiographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Genant HK, Wu CY, van Kuijk C et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    CAS  PubMed  Google Scholar 

  2. Pongchaiyakul C, Nguyen ND, Jones G et al (2005) Asymptomatic vertebral deformity as a major risk factor for subsequent fractures and mortality: a long-term prospective study. J Bone Miner Res 20:1349–1355

    Article  PubMed  Google Scholar 

  3. Lindsay R, Pack S, Li Z (2005) Longitudinal progression of fracture prevalence through a population of postmenopausal women with osteoporosis. Osteoporosis Int 16:306–312

    Article  Google Scholar 

  4. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  5. Finnern HW, Sykes DP (2003) The hospital cost of vertebral fractures in the EU: estimates using national datasets. Osteoporos Int 14:429–436

    Article  PubMed  Google Scholar 

  6. Link TM, Guglielmi G, van Kuijk C, Adams JE (2003) The hospital cost of vertebral fractures in the EU: estimates using national datasets. Eur Radiol 15:1521–1532

    Article  Google Scholar 

  7. Jackson SA, Tenenhouse A, Robertson L, the CaMos Study Group (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687

    Article  CAS  PubMed  Google Scholar 

  8. Melton LJ III (1997) Epidemiology of spinal osteoporosis. Spine 22(Suppl 1):2S–11S

    Article  PubMed  Google Scholar 

  9. Roy DK, O’Neill TW, Finn JD, Lunt M, Silman AJ et al (2003) Determinants of incident vertebral fracture in men and women: results from the European prospective Osteoporosis Study (EPOS). Osteoporos Int 14:19–26

    Article  CAS  PubMed  Google Scholar 

  10. Center JR, Nguyen TV, Schneider D et al (1999) Mortality after all major types of osteoporotic fractures in men and women: an observational study. Lancet 353:878–882

    Article  CAS  PubMed  Google Scholar 

  11. Kado DM, Browner WS, Palermo L et al (1999) Vertebral fractures and mortality in older women: study of Osteoporotic Fractures Research Group. Arch Intern Med 159:1215–1220

    Article  CAS  PubMed  Google Scholar 

  12. Burger H, Van Daele PLA, Gashuis K et al (1997) Vertebral deformities and functional impairment in men and women. J Bone Miner Res 12:152–157

    Article  CAS  PubMed  Google Scholar 

  13. Fink HA, Ensrud KE, Nelson DB et al (2003) Disability after clinical fracture in postmenopausal women with low bone density: The Fracture Intervention Trial (FIT). Osteoporos Int 14:69–76

    Article  CAS  PubMed  Google Scholar 

  14. Hasserius R, Karlsson MK, Jonsson B et al (2005) Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly-a 12- and 22-year follow-up of 257 patients. Calcif Tissue Int 76:235–242

    Article  CAS  PubMed  Google Scholar 

  15. Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    CAS  PubMed  Google Scholar 

  16. Schlaich C, Minne HW, Bruckner T et al (1998) Reduced pulmonary function in patient with spinal osteoporotic fractures. Osteoporos Int 8:261–267

    Article  CAS  PubMed  Google Scholar 

  17. Delmas PD, Genant HK, Crans GG et al (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from MORE trial. Bone 33:522–532

    Article  CAS  PubMed  Google Scholar 

  18. Chesnut CH III, Skag A, Christiansen C et al (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19:1241–1249

    Article  CAS  Google Scholar 

  19. Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomised clinical trial- Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637–645

    Article  CAS  PubMed  Google Scholar 

  20. Liberman UA, Weiss SR, Broll J et al (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 333:1437–1443

    Article  CAS  PubMed  Google Scholar 

  21. Mc Closkey E, Selby P, de Takats D et al (2001) Effects of clodronate on vertebral fracture risk in osteoporosis: a 1-year interim analysis. Bone 28(3):310–315 2001

    Article  Google Scholar 

  22. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  23. Reid DM, Hughes RA, Laan RFJM et al (2000) Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. European Corticosteroid-Induced Osteoporosis Treatment Study. J Bone Miner Res 15:1006–1013

    CAS  Google Scholar 

  24. Fink AH, Milavetz DL, Palermo L et al (2005) What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res 20:1216–1222

    Article  PubMed  Google Scholar 

  25. Hedlund LR, Gallagher JC (1988) Vertebral morphometry in diagnosis of spinal fractures. Bone Miner 5:59–67

    Article  CAS  PubMed  Google Scholar 

  26. Eastell R, Cedel SL, Wahner H et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    CAS  PubMed  Google Scholar 

  27. Mc Closkey EV, Spector TD, Eyres KS et al (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  Google Scholar 

  28. Minne HW, Leidig C, Wuster CHR et al (1988) A newly developed spine deformity index (SDI) to quantitative vertebral crush fractures in patients with osteoporosis. Bone Miner 3:335–349

    CAS  PubMed  Google Scholar 

  29. Kleerekoper M, Nelson DA (1992) Vertebral fracture or vertebral deformity? Calcif Tissue Int 50:5–6

    Article  CAS  PubMed  Google Scholar 

  30. Genant HK, Siris E, Crans GG et al (2005) Reduction in vertebral fracture risk in teriaparatide-treated postmenopausal women as assessed by spinal deformity index. Bone 37:170–174

    Article  CAS  PubMed  Google Scholar 

  31. Crans GG, Genant HK, Krege JH (2005) Measurement of vertebral heights. Bone 37:175–179

    Article  PubMed  Google Scholar 

  32. Genant HK, Jergas M, Palermo L et al (1996) Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. J Bone Miner Res 11:984–996

    CAS  PubMed  Google Scholar 

  33. Barnett E, Nordin BEC (1960) Radiographic diagnosis of osteoporosis: new approach. Clin Radiol 11:166–174

    Article  CAS  PubMed  Google Scholar 

  34. Jergas M, San Valentin R (1995) Techniques for the assessment of vertebral dimensions in quantitative morphometry. In: Genant HK, Jergas M, van Juijk C (eds) Vertebral Fracture In Osteoporosis. University of California Osteoporosis Research Group, San Francisco, pp 163–188

    Google Scholar 

  35. Hurxthal LM (1968) Measurement of vertebral heights. AJR 103:635–644

    CAS  Google Scholar 

  36. Diacinti D, Acca M, Tomei E (1995) Metodica di’radiologia digitale per la valutazione dell’osteoporosi vertebrale. Radiol Med 91:1–5

    Google Scholar 

  37. Nelson D, Peterson E, Tilley B et al (1990) Measurement of vertebral area on spine X-rays in osteoporosis: reliability of digitizing techniques. J Bone Miner Res; 5:707–716

    CAS  PubMed  Google Scholar 

  38. Kalidis L, Felsenberg D, Kalender WA et al (1992) Morphometric analysis of digitized radiographs: descrption of automatic evaluation. In: Ring EFJ (ed) Current research in osteoporosis and bone mineral measurement II. British Institute of Radiology, London, pp 14–16

    Google Scholar 

  39. Nicholson PHF, Haddaway MJ, Davie MWJ et al (1993) A computerized technique for vertebral morphometry. Physiol Meas 14:195–204

    Article  CAS  PubMed  Google Scholar 

  40. O’Neill TW, Felsenberg D, Varlow J et al (1996) The prevalence of vertebral deformity in European men and women: The European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018

    CAS  PubMed  Google Scholar 

  41. Smyth PP, Taylor CJ, Adams JE (1999) Vertebral shape: automatic measurement with active shape models. Radiology 211:571–578

    CAS  PubMed  Google Scholar 

  42. Roberts M, Cootes TF, Adams JE (2006) Vertebral morphometry: semiautomatic determination of detailed shape from dual-energy X-ray absorptiometry images using active appearance models. Invest Radiol 41(12):849–859

    Article  PubMed  Google Scholar 

  43. Zamora G, Sari-Sarraf H, Long LR (2003) Hierarchical segmentation of vertebrae from X-ray images. In Proc. of SPIE Medical Imaging 5032:631–642

    Google Scholar 

  44. Howe B, Gururajan A, Sari-Sarraf H, Long LR (2004) Hierarchical segmentation of cervical and lumbar vertebrae using a customized generalized Hough transform and extensions to active appearance models. In: Proc IEEE 6th SSIAI; 182–186

  45. de Bruijne M and Nielsen M (2004) Image segmentation by shape particle filtering. In: Proc. 17th International Conference on Pattern Recognition 2004;722–725

  46. Guglielmi G, Palmieri F, Placentino MG et al (2008) Assessment of osteoporotic vertebral fractures using specialized workflow software for six point morphometry. Eur J Radiol Jan 31 [Epub ahead of print] DOI 10.1016/j.ejrad.2007.12.001

  47. Guglielmi G, Stoppino LP, Placentino MG et al (2007) Reproducibility of a Semi-Automatic Method for 6-Point Vertebral Morphometry in a Multi-Centre Trial. Eur J Radiol Dec 8 [Epub ahead of print] DOI 10.1016/j.ejrad.2007.09.040

  48. Banks LM, van Juijk C, Genant HK (1995) Radiographic technique for assessing osteoporotic vertebral fracture. In: Genant, Jergas M, van Juijk C (eds) Vertebral Fracture In Osteoporosis. University of California Osteoporosis Research Group, San Francisco, pp 131–147

    Google Scholar 

  49. Gallagher JC, Hedlund LR, Stoner S et al (1988) Vertebral morphometry: normative data. Bone Miner 4:189–196

    CAS  PubMed  Google Scholar 

  50. Adams JE (1997) Single and dual energy X-ray absorptiometry. In: Guglielmi G, Passariello R,Genant HK (eds) Bone Densitometry: an update. Eur Radiol 7(Suppl 2):S20–S31

    Google Scholar 

  51. Steiger P, Cummings SR, Genant HK, Weiss H, the Study of Osteoporotic Fractures Research Group (1994) Morphometric X-ray absorptiometry of the spine: correlation in vivo with morphometric radiography. Osteoporos Int 4:238–244

    Article  CAS  PubMed  Google Scholar 

  52. Blake JM, Jagathesan T, Herd RJM, Fogelman I (1994) Dual X-ray absorptiometry of the lumbar spine: the precision of paired anteroposterior/lateral studies. Br J Radiol 67:624–630

    CAS  PubMed  Google Scholar 

  53. Gardner JC, von Ingersleben G, Heyano SL et al (2001) An interactive tutorial-based training technique for vertebral morphometry. Osteoporosis Int 12:63–70

    Article  CAS  Google Scholar 

  54. Blake GM, Rea JA, Fogelman I (1997) Vertebral morphometry studies using dual-energy X-ray absorptiometry. Semin Nucl Med 27:276–290

    Article  CAS  PubMed  Google Scholar 

  55. Harvey SB, Hutchinson KM, Rennie EC et al (1998) Comparison of the precision of two vertebral morphometry programs for the Lunar Expert-XL imaging densitometer. Br J Radiol 71:388–398

    CAS  PubMed  Google Scholar 

  56. Crabtree N, Wright J, Walgrove A et al (2000) Vertebral morphometry: repeat scan precision using the Lunar Expert-XL and the Hologic 4500A. A study for the ‘WISDOM’ RCT of hormone replacement therapy. Osteoporos Int 11:537–543

    CAS  Google Scholar 

  57. Ferrar L, Jiang G, Eastell R et al (2003) Visual identification of vertebral fractures in osteoporosis using morphometric X-ray absorptiometry. J Bone Miner Res 18:933–938

    Article  CAS  PubMed  Google Scholar 

  58. Kalender WA, Eidloth H (1991) Determination of geometric parameters and osteoporosis indices for lumbar vertebrae from lateral QCT localizer radiographs. Osteoporos Int 1:197–200

    Google Scholar 

  59. Lewis MK, Blake GM (1995) Patient dose in morphometric X-ray absorptiometry (letter). Osteoporos Int 5:281–282

    Article  CAS  PubMed  Google Scholar 

  60. Njeh CF, Fuerst T, Hans D et al (1999) Radiation exposure in bone mineral density assessment. Appl Radiat Isot 50:215–236

    Article  CAS  PubMed  Google Scholar 

  61. Rea JA, Li J, Blake GM et al (2000) Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 11:660–668

    Article  CAS  PubMed  Google Scholar 

  62. Edmondston SJ, Price RI, Valente B et al (1999) Measurement of vertebral body height: ex vivo comparison between morphometric X-ray absorptiometry, morphometric radiography and direct measurements. Osteoporosis Int 10:7–13

    Article  CAS  Google Scholar 

  63. Rea JA, Chen MB, Li J et al (2000) Morphometry X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res 15:564–574

    Article  CAS  PubMed  Google Scholar 

  64. Steiger P, Wahner H (1994) Instruments using fan-beam geometry. In: Wahner, Fogelman I (eds) The Evaluation of Osteoporosis. Dual Energy X-Ray Absorptiometry in Clinical Practice. Martin Dunitz, Ltd., London, pp 281–288

    Google Scholar 

  65. Djoumessi RMZ, Maalouf G, Wehbe J et al (2004) The varying distribution of intra-and intervertebral height ratios determines the prevalence of vertebral fractures. Bone 35:348–356

    Article  PubMed  Google Scholar 

  66. O’Neill TW, Varlow J, Felsenberg D et al (1994) Variation in vertebral heights ratios in population studies. J Bone Miner Res 9:1895–1907

    CAS  PubMed  Google Scholar 

  67. Smith-Bindman R, Cummings SR, Steiger P et al (1991) A comparison of morphometric definitions of vertebral fracture. J Bone Miner Res 6:25–34

    CAS  PubMed  Google Scholar 

  68. Cline MG, Meredith KE, Boyer JT et al (1989) Decline in height with age in adults in a general population sample: estimating maximum height and distinguishing birth cohort effect from actual loss of stature with aging. Hum Biol 61:415–425

    CAS  PubMed  Google Scholar 

  69. Diacinti D, Acca M, D’Erasmo E et al (1995) Aging changes in vertebral morphometry. Calcif Tissue Int 57:426–429

    Article  CAS  PubMed  Google Scholar 

  70. Nicholson PHF, Haddaway MJ, Davie MWJ et al (1993) Vertebral deformity, bone mineral density, back pain and height loss in unscreened women over 50 years. Osteoporos Int 3:300–307

    Article  CAS  PubMed  Google Scholar 

  71. Evans SF, Nicholson PHF, Haddaway MJ et al (1993) Vertebral morphometry in women aged 50–81 years. Bone Miner 21:29–40

    Article  CAS  PubMed  Google Scholar 

  72. Melton LJ III, Kan SH, Frye MA et al (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1010

    PubMed  Google Scholar 

  73. Black DM, Cummings SR, Stone K et al (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883–892

    CAS  PubMed  Google Scholar 

  74. Hermann AP, Brixen K, Andersen J et al (1993) Reference values for vertebral heights in Scandinavian females and males. Acta Radiologica 34:48–52

    Article  CAS  PubMed  Google Scholar 

  75. Diacinti D, Francucci C, Fiore C et al (2005) Italian preliminary reference data of normal vertebral dimensions for morphometric X-ray absorptiometry (MXA): Normal morphometric Dexa (NORMODEXA) Study. Bone 36(Suppl.2):S351

    Google Scholar 

  76. Ziegler R, Scheidt-Nave C, Leidig-Bruckner G (1996) What is a vertebral fracture? Bone 18:169–177

    Article  Google Scholar 

  77. Grados F, Roux C, de Vernejoul MC et al (2001) Comparison of four morphometric definitions and a semiquantitative consensus reading for assessing prevalent vertebral fractures. Osteoporos Int 12:716–722

    Article  CAS  PubMed  Google Scholar 

  78. Nevitt MC, Ross PD, Palermo L et al (1999) Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. Bone 25:613–619

    Article  CAS  PubMed  Google Scholar 

  79. Lunt M, Ismail AA, Felsenberg D et al (2002) Defining incident vertebral deformities in population studies: a comparison of morphometric criteria. Osteoporos Int 13:809–815

    Article  CAS  PubMed  Google Scholar 

  80. Hochberg MC, Ross PD, Black D et al (1999) Larger increases in bone mineral density during alendronate therapy are associated with a lower risk of new vertebral fractures in women with postmenopausal osteoporosis. Fracture Inteventional Trial Research Group. Arthritis Rheum 42:1246–1254

    CAS  Google Scholar 

  81. Melton LJ III, Egan KS, O’Fallon WM et al (1998) Influence of fracture criteria on the outcome of a randomized trial of therapy. Osteoporos Int 8:184–191

    Article  PubMed  Google Scholar 

  82. Sauer P, Leidig G, Minne HW et al (1991) Spine Deformity Index (SDI) versus other objective procedures of vertebral fracture identification in patients with osteoporosis: a comparative study. J Bone Miner Res 6:227–238

    CAS  PubMed  Google Scholar 

  83. Mazzuoli GF, Diacinti D, Acca M et al (1998) Relationship between spine bone mineral density and vertebral body heights. Calcif Tissue Int 62:486–490

    Article  CAS  PubMed  Google Scholar 

  84. Zebaze R, Maalouf G, Maalouf N, Seeman E (2004) Loss of regularity in the curvature of the thoracolumbar spine: a measure of structural failure. J Bone Miner Res 19:1099–1104

    Article  PubMed  Google Scholar 

  85. Black DM, Palermo L, Nevitt MC et al (1995) Comparison of methods for defining prevalent vertebral deformities: the study of osteoporotic fractures. J Bone Miner Res 10:890–902

    Article  CAS  PubMed  Google Scholar 

  86. Wu C, van Kuijk C, Jiang Y et al (2000) Comparison of digitized images with original radiography for semiquantitative assessment of osteoporotic fractures. Osteoporos Int 11:25–30

    Article  PubMed  Google Scholar 

  87. Ferrar L, Jiang G, Armbrecht G et al (2007) Is short vertebral height always an osteoporotic fracture? The Osteoporosis and Ultrasound Study (OPUS). Bone 41(1):5–12

    Article  CAS  PubMed  Google Scholar 

  88. Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int 14(Suppl 3):S43–S55

    PubMed  Google Scholar 

  89. Lenchik LL, Rogers LF, Delmas PD et al (2004) Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR 183:949–958

    PubMed  Google Scholar 

  90. Jiang G, Ferrar L, Barrington NA, Eastell R (2007) Standardised quantitative morphometry: a modified approach for quantitative identification of prevalent vertebral deformities. Osteoporos Int 18(10):1411–1419

    Article  CAS  PubMed  Google Scholar 

  91. Jiang G, Eastell R, Barrington NA, Ferrar L (2004) Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15:887–896

    Article  CAS  PubMed  Google Scholar 

  92. Ferrar L, Jiang G, Cawthon PM et al (2007) Identification of vertebral fracture and non–osteoporotic short vertebral height in men: the MrOS study. J Bone Miner Res 22:1434–1441

    Article  PubMed  Google Scholar 

  93. Giannini S, Nobile M, Dalle Carbonare L et al (2001) Vertebral morphometry by X-ray absorptiometry before and after liver transplant: a cross-sectional study. Eur J Gastroenterol Hepatol 13:1201–1207

    Article  CAS  PubMed  Google Scholar 

  94. Mazzaferro S, Diacinti D, Proietti E et al (2006) Morphometric X-ray absorptiometry in the assessment of vertebral fractures in renal transplant patients. Nephrol Dial Transplant 21:466–471

    Article  PubMed  Google Scholar 

  95. National Osteoporosis Foundation (1998) Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Osteoporos Int 8(Suppl 4):S1–S85

    Google Scholar 

  96. Kanis JA, Black D, Cooper C et al (2002) A new approach to the development of assessment guidelines for osteoporosis. Osteoporos Int 13:527–536

    Article  CAS  PubMed  Google Scholar 

  97. International Osteoporosis Foundation and European Society of Musculoskeletal Radiology (2003) Vertebral Fracture Initiative Resource Document. Available from URL: http://www.iofbonehealth.org/vfi/assets/resources/Resource-Document.pdf [accessed October 29, 2007]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Guglielmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guglielmi, G., Diacinti, D., van Kuijk, C. et al. Vertebral morphometry: current methods and recent advances. Eur Radiol 18, 1484–1496 (2008). https://doi.org/10.1007/s00330-008-0899-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0899-8

Keywords

Navigation