Skip to main content
Log in

Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The lower the heart rate the better image quality in multislice computed tomography (MSCT) coronary angiography. We prospectively assessed the influence of heart rate on per-patient diagnostic accuracy and image quality of MSCT coronary angiography and compared adaptive multisegment and standard halfscan reconstruction. A consecutive cohort of 126 patients scheduled to undergo conventional coronary angiography was examined with 16-slice CT. For all heart rate groups, per-patient diagnostic accuracy was significantly higher for multisegment than halfscan reconstruction with values of 95 vs. 79% (p < 0.05, <65 bpm, 38 patients), 85 vs. 66% (p < 0.05, 65–74 bpm, 47 patients), and 78% vs. 41% (p < 0.001, >74 bpm, 41 patients). Differences in diagnostic accuracy between adjacent heart rate groups were only significant for halfscan reconstruction for the comparison between the 65–74 and >74 bpm group (p < 0.05). The vessel lengths free of motion artifacts were significantly longer with multisegment reconstruction in all heart rate groups and for all coronary arteries (p < 0.005). For noninvasive MSCT coronary angiography, both per-patient diagnostic accuracy and image quality decline with increasing heart rate, and multisegment reconstruction at high heart rates yields similar results as standard halfscan reconstruction at low heart rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411

    Article  PubMed  CAS  Google Scholar 

  2. Dewey M, Teige F, Schnapauff D, et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    PubMed  Google Scholar 

  3. Hoffmann MH, Shi H, Schmitz BL, et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478

    Article  PubMed  CAS  Google Scholar 

  4. Mollet NR, Cademartiri F, Nieman K, et al (2004) Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol 43:2265–2270

    Article  PubMed  Google Scholar 

  5. Pugliese F, Mollet NR, Runza G, et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  6. Leschka S, Alkadhi H, Plass A, et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  7. Nieman K, Rensing BJ, van Geuns RJ, et al (2002) Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 88:470–474

    Article  PubMed  CAS  Google Scholar 

  8. Giesler T, Baum U, Ropers D, et al (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 179:911–916

    PubMed  Google Scholar 

  9. Cademartiri F, Mollet NR, Runza G, et al (2005) Diagnostic accuracy of multislice computed tomography coronary angiography is improved at low heart rates. Int J Cardiovasc Imaging:1–5

  10. Martuscelli E, Romagnoli A, D’Eliseo A, et al (2004) Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 25:1043–1048

    Article  PubMed  Google Scholar 

  11. Ropers D, Baum U, Pohle K, et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  12. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  13. Dewey M, Laule M, Krug L, et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39:223–229

    Article  PubMed  Google Scholar 

  14. Hoffmann U, Moselewski F, Cury RC, et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation 110:2638–2643

    Article  PubMed  Google Scholar 

  15. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  16. Dewey M, Hoffmann H, Hamm B (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerine on the diameter of coronary arteries. Fortschr Röntgenstr 178:600–604

    Article  CAS  Google Scholar 

  17. Dewey M, Müller M, Teige F, et al (2006) Multisegment and halfscan reconstruction of 16-slice computed tomography for assessment of regional and global left ventricular myocardial function. Invest Radiol 41:400–409

    Article  PubMed  Google Scholar 

  18. Austen WG, Edwards JE, Frye RL, et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    PubMed  CAS  Google Scholar 

  19. Dewey M, Rutsch W, Schnapauff D, Teige F, Hamm B (2007) Coronary artery stenosis quantification with multislice computed tomography. Invest Radiol 42:78–84

    Article  PubMed  Google Scholar 

  20. Achenbach S, Giesler T, Ropers D, et al (2003) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Invest Radiol 38:119–128

    Article  PubMed  Google Scholar 

  21. Simel DL, Feussner JR, DeLong ER, Matchar DB (1987) Intermediate, indeterminate, and uninterpretable diagnostic test results. Med Decis Mak 7:107–114

    Article  CAS  Google Scholar 

  22. Begg CB, Greenes RA, Iglewicz B (1986) The influence of uninterpretability on the assessment of diagnostic tests. J Chronic Dis 39:575–584

    Article  PubMed  CAS  Google Scholar 

  23. Knottnerus JA, Muris JW (2003) Assessment of the accuracy of diagnostic tests: the cross-sectional study. J Clin Epidemiol 56:1118–1128

    Article  PubMed  CAS  Google Scholar 

  24. Hoffmann MH, Shi H, Manzke R, et al (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97

    Article  PubMed  Google Scholar 

  25. Greuter MJ, Dorgelo J, Tukker WG, Oudkerk M (2005) Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol 15:995–1007

    Article  PubMed  Google Scholar 

  26. Hamoir XL, Flohr T, Hamoir V, et al (2005) Coronary arteries: assessment of image quality and optimal reconstruction window in retrospective ECG-gated multislice CT at 375-ms gantry rotation time. Eur Radiol 15:296–304

    Article  PubMed  Google Scholar 

  27. Grosse C, Globits S, Hergan K (2007) Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol 48:36–44

    Article  PubMed  CAS  Google Scholar 

  28. Johnson TR, Nikolaou K, Wintersperger BJ, et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  29. Flohr TG, McCollough CH, Bruder H, et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  30. Achenbach S, Ropers D, Kuettner A, et al (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography-initial experience. Eur J Radiol 57:331–335

    Article  PubMed  Google Scholar 

  31. Scheffel H, Alkadhi H, Plass A, et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747

    Article  PubMed  Google Scholar 

  32. Leber AW, Knez A, von Ziegler F, et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  33. Mollet NR, Cademartiri F, van Mieghem CA, et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  34. Ropers D, Rixe J, Anders K, et al (2006) Usefulness of multidetector row spiral computed tomography with 64- × 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 97:343–348

    Article  PubMed  Google Scholar 

  35. Leschka S, Wildermuth S, Boehm T, et al (2006) Noninvasive coronary angiography with 64-section CT: Effect of average heart rate and heart rate variability on image quality. Radiology 241:378–385

    Article  PubMed  Google Scholar 

  36. Leschka S, Husmann L, Desbiolles LM, et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16(9):1964–1972

    Article  PubMed  Google Scholar 

  37. Salem R, Remy-Jardin M, Delhaye D, et al. (2006) Integrated cardio-thoracic imaging with ECG-Gated 64-slice multidetector-row CT: initial findings in 133 patients. Eur Radiol 16:1973–1981

    Article  PubMed  Google Scholar 

  38. Greuter MJ, Flohr T, van Ooijen PM, Oudkerk M (2007) A model for temporal resolution of multidetector computed tomography of coronary arteries in relation to rotation time, heart rate and reconstruction algorithm. Eur Radiol 17(3):784–812

    Article  PubMed  CAS  Google Scholar 

  39. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463

    PubMed  CAS  Google Scholar 

  40. He S, Dai R, Chen Y, Bai H (2001) Optimal electrocardiographically triggered phase for reducing motion artifact at electron-beam CT in the coronary artery. Acad Radiol 8:48–56

    Article  PubMed  CAS  Google Scholar 

  41. Mao S, Lu B, Oudiz RJ, Bakhsheshi H, Liu SC, Budoff MJ (2000) Coronary artery motion in electron beam tomography. J Comput Assist Tomogr 24:253–258

    Article  PubMed  CAS  Google Scholar 

  42. Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewey, M., Teige, F., Laule, M. et al. Influence of heart rate on diagnostic accuracy and image quality of 16-slice CT coronary angiography: comparison of multisegment and halfscan reconstruction approaches. Eur Radiol 17, 2829–2837 (2007). https://doi.org/10.1007/s00330-007-0685-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0685-z

Keywords

Navigation