Skip to main content
Log in

A model for temporal resolution of multidetector computed tomography of coronary arteries in relation to rotation time, heart rate and reconstruction algorithm

  • Experimental
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

A model is presented that describes the image quality of coronary arteries with multidetector computer tomography. The results are discussed in the context of rotation time of the scanner, heart rate, and number of sectors used in the acquisition process. The blurring of the coronary arteries was calculated for heart rates between 50 and 100 bpm for rotation times of 420, 370, and 330 ms, and one-, two-, three-, and four-sector acquisition modes and irregular coronary artery movement is included. The model predicts optimal timing within the RR cycle of 45±3% (RCA), 44±4% and 74±6% (LCX), and 35±4% and 76±5% (LAD). The optimal timing shows a negative linear dependency on heart rate and increases with the number of sectors used. The RCA blurring decreases from 0.98 cm for 420 ms, one-sector mode to 0.27 cm for 330 ms, four-sector mode. The corresponding values are 0.81 cm and 0.29 cm for LCX and 0.42 cm and 0.17 cm for LAD. The number of sectors used in a multisector reconstruction and the timing within the cardiac cycle should be adjusted to the specific coronary artery that has to be imaged. Irregular coronary artery movement of 1.5 mm justifies the statement that no more than two sectors should be used in multisector acquisition processes in order to improve temporal resolution in cardiac MDCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Flohr T, Schaller S, Stierstorfer K, Bruder H, Ohnesorge BM, Schoepf UJ (2005) Multi-detector row ct systems and image-reconstruction techniques. Radiology 235:756–773

    PubMed  Google Scholar 

  2. Dewey M, Laule M, Krug L, Schnapauff D, Rogalla P, Rutsch W, Hamm B, Lembcke A (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39:223–229

    Article  PubMed  Google Scholar 

  3. Shinbane JS, Budoff MJ (2005) Computed tomographic cardiovascular imaging. Stud Health Technol Informat 113:148–181

    Google Scholar 

  4. Schroeder S, Kopp AF, Kuettner A et al (2002) Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography; experience in 94 patients. J Clin Imag 26:106–111

    Article  Google Scholar 

  5. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2051–2054

  6. Kopp AF, Kuttner A, Trabold T, Heuschmid M, Schroder S, Claussen CD (2004) Multislice CT in cardiac and coronary angiography. Br J Radiol 77:S87–S97

    Article  PubMed  Google Scholar 

  7. McCollough CH, Bruesewitz MR, Daly TR, Zink FE (2000) Motion artifacts in subsecond conventional CT and electron-beam CT: pictorial demonstration of temperal resolution. RadioGraph 20:1675–1681

    CAS  Google Scholar 

  8. Giesler T, Baum U, Ropers D et al (2002) Noninvasive visualization of coronary aretries using contrast-enhanced multidetector CT. Am J Rontgenol 179:911–916

    Google Scholar 

  9. Herzog C, Abolmaali N, Balzer JO et al (2002) Heart-rate-adapted image reconstruction in multidetector-row cardiac CT: influence of physiological and technical prerequisite on image quality. Eur Radiol 12(11):2670–2678

    PubMed  Google Scholar 

  10. Hoffmann MHK, Shi H, Manzke R, Schmid FT, De Vries L, Grass M, Brambs H-J, Schoff AJ (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97

    PubMed  Google Scholar 

  11. Hong C, Becker CR, Huber A et al (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220:712–717

    PubMed  CAS  Google Scholar 

  12. Lu B, SS Mao, Zhuang N et al (2001) Coronary artery motion during the cardiac cycle and optimal ECG triggering for coronary artery imaging. Invest Radiol 36(5):250–256

    Article  PubMed  CAS  Google Scholar 

  13. Bruder H, Schaller S, Ohnesorge B, Mertelmeier T (1999) High temporal resolution volume heart imaging with multirow computed tomography. SPIE Med Imag 3661:420–432

    Article  Google Scholar 

  14. Flohr T, Ohnesorge B (2001) Heart rate adaptive optimization of spatial and temporal resolution for electrocardiogram-gated multislice spiral CT of the heart. J Comput Assist Tomogr 25(6):907–923

    Article  PubMed  CAS  Google Scholar 

  15. Halliburton SS, Stillman AE, Flohr T et al (2003) Do segmented reconstruction algorithms for cardiac multi-slice computed tomography improve image quality? Herz 28:20–31

    Article  PubMed  Google Scholar 

  16. Horiguchi J (2002) Technical innovation of cardiac multirow detector CT using multisector reconstruction. Comput Med Imag Graph 26:217–226

    Article  Google Scholar 

  17. Kachelriess M (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27(8):1881–1902

    Article  PubMed  CAS  Google Scholar 

  18. Greuter MJ, Dorgelo J, Tukker WG, Oudkerk M (2005) Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit. Eur Radiol 15(5):995–1007

    Article  PubMed  Google Scholar 

  19. Wicky S, Rosol M, Hoffmann U, Graziano M, Yucel KE, Brady TJ (2003) Comparative study with a moving heart phantom of the impact of temporal resolution on image quality with two multidetector electrocardiography-gated computed tomography units. J Comput Assist Tomogr 27(3):392–398

    Article  PubMed  Google Scholar 

  20. Wicky S, Rosol M, Hamberg LM, Hoffmann U, Enzweiler C, Graziano M, Brady T (2002) Evaluation of retrospective multisector and half scan ECG-gated multidetector cardiac CT protocols with moving phantoms. J Comput Assist Tomogr 26(5):768–776

    Article  PubMed  Google Scholar 

  21. Silverman PM, Kalender WA, Hazle JD (2001) Common terminology for single and multislice helical CT. Am J Roentgenol 176:1135–1136

    CAS  Google Scholar 

  22. Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463

    PubMed  CAS  Google Scholar 

  23. Hofman MBM, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magnet Reson Imag 8:568–576

    CAS  Google Scholar 

  24. Mao S, Lu B, Takasu J, Oudiz RJ, Budoff MJ (2003) Measurement of the RT interval on ECG records during electron-beam CT. Academ Radiol 10:638–643

    Article  Google Scholar 

  25. Kopp AF, Schroeder S, Kuettner A et al (2001) Coronary arteries: retrospectively ECG-gated multi-detector row CT angiography with selective optimization of the image reconstruction window. Radiology 221:683–688

    PubMed  CAS  Google Scholar 

  26. Mao S, Budoff MJ, Bin L, Liu SCK (2001) Optimal ECG trigger point in electron-beam CT studies. Academ Radiol 8:1107–1115

    Article  CAS  Google Scholar 

  27. Begemann PG, van Stevendaal U, Manzke R et al (2005) Evaluation of spatial and temporal resolution for ECG-gated 16-row multidetector CT using a dynamic cardiac phantom. Eur Radiol 15(5):1015–1026, Epub 2005 jan 21

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. W. Greuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greuter, M.J.W., Flohr, T., van Ooijen, P.M.A. et al. A model for temporal resolution of multidetector computed tomography of coronary arteries in relation to rotation time, heart rate and reconstruction algorithm. Eur Radiol 17, 784–812 (2007). https://doi.org/10.1007/s00330-006-0228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0228-z

Keywords

Navigation