Skip to main content
Log in

Regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE)

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The aim of the present study was a detailed analysis of the regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE) by means of functional magnetic resonance imaging (MRI). A group of 26 patients with SAE and a group of 16 age-matched healthy volunteers were examined. Using a well-established dynamic susceptibility contrast-enhanced MRI method, the regional cerebral blood flow (rCBF) and blood volume (rCBV) were quantified for each subject in 12 different regions in the brain parenchyma. As compared to healthy volunteers, patients with SAE showed significantly reduced rCBF and rCBV values in white matter regions and in the occipital cortex. Regions containing predominantly grey matter show almost normal rCBF and rCBV values. In conclusion, quantitative analysis of rCBF and rCBV values demonstrates clearly that SAE is a disease that is associated with a reduced microcirculation predominantly in white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bronge L (2002) Magnetic resonance imaging in dementia. A study of brain white matter changes. Acta Radiol 43(Suppl 428):7–32

    Google Scholar 

  2. Schreiber WG, Gückel F, Stritzke P, Schmiedek P, Schwartz A, Brix G (1998) Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 18:1143–1156

    Article  PubMed  CAS  Google Scholar 

  3. Rempp K, Brix G, Gückel F, Becker C, Wenz F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume by dynamic susceptibility contrast enhanced MR imaging. Radiology 193:637–641

    PubMed  CAS  Google Scholar 

  4. Ostergaard L, Johannsen P, Host Poulsen P, Vestergaard-Poulsen P, Gee AD, Hansen SB (1998) Cerebral blood flow measurement by magnetic resonance imaging bolus tracking: comparison with 15O-H2O PET in humans. J Cereb Blood Flow Metab 18:935–940

    Article  PubMed  CAS  Google Scholar 

  5. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part 2: experimental comparison and preliminary results. Magn Reson Med 36:726–736

    Article  PubMed  CAS  Google Scholar 

  6. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages, part 1: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  PubMed  CAS  Google Scholar 

  7. Wirestam R, Borg M, Brockstedt S, Lindgren A, Geijer B, Holtas S (2001) Perfusion related parameters in intravoxel incoherent motion imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42:123–128

    Article  PubMed  CAS  Google Scholar 

  8. Wirestam R, Ryding E, Lindgren A, Geijer B, Holtas S, Stahlberg F (2000) Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133SPECT. Magma 11:96–103

    Article  PubMed  CAS  Google Scholar 

  9. Wirestam R, Ryding E, Lindgren A, Geijer B, Ostergaard L, Andersson L (2000) Regional cerebral blood flow distributions in normal volunteers: dynamic susceptibility contrast enhanced MRI compared with 99m-Tc-HMPAO SPECT. J Comput Assist Tomogr 24:526–530

    Article  PubMed  CAS  Google Scholar 

  10. Gückel F, Brix G, Rempp K, Deimling M, Röther J, Georgi M (1994) Assessment of cerebral blood volume with dynamic susceptibility contrast enhanced gradient-echo imaging. J Comput Assist Tomogr 18:344–351

    Article  PubMed  Google Scholar 

  11. Gückel F, Brix G, Schmiedek P, Piepgras A, Becker G, Köpke J (1996) Assessment of cerebrovascular reserve capacity in patients with occlusive cerebrovascular disease using dynamic susceptibility contrast enhanced MR-Imaging and the acetazolamide stimulation test. Radiology 201:405–412

    PubMed  Google Scholar 

  12. Roman GC, Tatemichi TK, Erkinjuntti T (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250–260

    PubMed  CAS  Google Scholar 

  13. Mäntylä R, Aronen HJ, Salonen O, Korpelainen M, Peltonen T, Standertskjöld-Nordenstam CG (1999) The prevalence and distribution of white-matter changes on different MRI pulse sequences in a post-stroke cohort. Neuroradiology 41:657–665

    Article  PubMed  Google Scholar 

  14. Perman WH, Gado M, Larson KB, Perlmutter JS (1993) The in vivo relationship between Gd-DTPA concentration and ΔR2 for brain parenchyma and arterial blood 13. Annual Meeting Society of Magnetic Resonance in Medicine 1993. Abstr Pap-Am Chem Soc 3:88

    Google Scholar 

  15. Perman WH, Gado M, Larson KB, Perlmutter JS (1992) Simultaneous MR acquisition of arterial and brain signal-time curvesMagn. Res Med 28:74–83

    Article  CAS  Google Scholar 

  16. Fisel CR, Ackerman JL, Buxton RB (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17:336–347

    Article  PubMed  CAS  Google Scholar 

  17. Rosen BR, Belliveau JW, Buchbinder BR, McKinstry RC, Porkka LM, Kennedy DN (1991) Contrast agents and cerebral hemodynamicsMagn. Reson Med 19:285–292

    Article  CAS  Google Scholar 

  18. Rosen BR, Belliveau JW, Chien D (1989) Perfusion imaging by nuclear magnetic resonance. Magn Reson Q 5:263–281

    PubMed  CAS  Google Scholar 

  19. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  PubMed  CAS  Google Scholar 

  20. Sabatini U, Celsis P, Viallard G, Rascol A, Marc-Vergnes JP (1991) Quantitative assessment of cerebral blood volume by single-photon emission computed tomography. Stroke 22:324–330

    PubMed  CAS  Google Scholar 

  21. Pocock SJ, Geller NL, Tsiatis AA (1987) The analysis of multiple endpoints in clinical trials. Biometrics 43:487–498

    Article  PubMed  CAS  Google Scholar 

  22. Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy R, McKinstry RC (1990) Functional cerebral imaging by susceptibility-contrast NMR Magn. Reson Med 14:538–546

    Article  CAS  Google Scholar 

  23. Edelman RR, Mattle HP, Atkinson DJ, Hill T, Finn JP, Mayman C (1990) Cerebral blood flow: assessment with dynamic contrast-enhanced T2* weighted MR imaging at 1.5 Tesla. Radiology 176:211–220

    PubMed  CAS  Google Scholar 

  24. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure and normal values. J Comput Assist Tomogr 4:727–736

    Article  PubMed  CAS  Google Scholar 

  25. Kreisig T, Schmiedek P, Leinsinger G, Einhäupl K, Moser E (1987) 133-Xe-DSpect: Normalwerte von zerebraler Ruhedurchblutung und Reservekapazität. Nucl Med 26:192–197

    CAS  Google Scholar 

  26. Lenzi GL, Frakowiak RSJ, Jones T (1981) CMRO2 and CBF by the oxygen-15 inhalation techniques: Results in normal volunteers and cerebrovascular patients. Eur Neurol 20:285–290

    PubMed  CAS  Google Scholar 

  27. Powers WJ, Raichle ME (1985) Positron emission tomography and its application to the study of cerebrovascular disease in man. Stroke 16:361–376

    PubMed  CAS  Google Scholar 

  28. Redzai K, Kirchner PT, Armstrong C, Erhardt JC (1988) Validation studies for brain blood flow assessment by radioxenon tomography. J Nucl Med 29:348–355

    Google Scholar 

  29. Ryding E (1989) Estimation of error limits for cerebral blood flow values obtained from Xenon-133 clearance curves. Stroke 20:205–210

    PubMed  CAS  Google Scholar 

  30. Sperling B, Lassen NA (1993) Hyperfixation of HMPAO in subacute ischemic stroke leading to spuriously high estimates of cerebral blood flow by SPECT. Stroke 24:193–194

    PubMed  CAS  Google Scholar 

  31. Berthezene Y, Nighoghossian N, Meyer R, Damien J, Cinotti L, Adeleine P (1998) Can cerebrovascular reactivity be assessed by dynamic susceptibility contrast-enhanced MRI. Neuroradiology 40:1–5

    Article  PubMed  CAS  Google Scholar 

  32. Renshaw PF, Levin JM, Kaufman MJ, Ross MH, Lewis RF, Harris GJ (1997) Dynamic susceptibility contrast magnetic resonance imaging in neuropsychiatry: present utility and future promise. Eur Radiol 7(Suppl 5):216–221

    Article  PubMed  Google Scholar 

  33. Henry ME, Kaufman MJ, Lange N, Schmidt ME, Purcell S, Cote J (2001) Test-retest reliability of DSC MRI CBV mapping in healthy volunteers. Neuroreport 13(12):1576–1579

    Google Scholar 

  34. Leenders KL, Perani D, Lammertsma AA, Heather JD, Healy MJ, Gibbs JM et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:27–47

    Article  PubMed  Google Scholar 

  35. Pantano P, Baron JC, Lebrum-Grandie P (1985) Regional cerebral blood flow and oxygen consumption in human aging. Stroke 15:635–641

    Google Scholar 

  36. Stoll M, Hagen T, Bartylla K, Weber M, Jost V, Treib J (1998) Changes of cerebral perfusion after osmotherapy in acute cerebral edema assessed with perfusion weighted MRI. Neurol Res 20:474–478

    PubMed  CAS  Google Scholar 

  37. Tsuchida C, Yamada H, Maeda M, Sadato N, Matsuda T, Kawamura Y et al (1997) Evaluation of peri-infarcted hypoperfusion with T2*-weighted dynamic MRIMagn. Reson Imaging 7:518–522

    Article  CAS  Google Scholar 

  38. Helenius J, Perkio J, Soinne L, Ostergaard L, Carano RA, Salonen C (2003) Cerebral hemodynamics in a healthy population measured by dynamic susceptibility contrast MR imaging. Acta Radiol 44:538–546

    Article  PubMed  CAS  Google Scholar 

  39. Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K et al (2000) Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke 31:1904–1912

    PubMed  CAS  Google Scholar 

  40. Bruening R, Dichgans M, Berchtenbreiter C, Yousry T, Seelos KC, Mayer M, Brix G et al (2001) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy: decrease in regional cerebral blood volume in hyperintense subcortical lesions inversely correlates with disability and cognitive performance. AJNR 22:1268–1274

    PubMed  CAS  Google Scholar 

  41. Yao H, Sadoshima S, Kuwabara Y, Ichiya Y, Fujishima M (1990) Cerebral blood flow and oxygen metabolism in patients with vascular dementia of the Binswangers type. Stroke 21:1694–1699

    PubMed  CAS  Google Scholar 

  42. Markus HS, Lythgoe DJ, Ostergaard L, O‘ Sullivan M, Williams SCR (2000) Reduced cerebral blood flow in white matter in ischemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI. J Neurol Neurosurg Psychiatry 69:48–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann J. Gückel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gückel, F.J., Brix, G., Hennerici, M. et al. Regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE). Eur Radiol 17, 2483–2490 (2007). https://doi.org/10.1007/s00330-007-0617-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0617-y

Keywords

Navigation