Skip to main content

Advertisement

Log in

Non-cardiac findings on coronary computed tomography and magnetic resonance imaging

  • Cardiac
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Both multislice computed tomography (CT) and magnetic resonance imaging (MRI) are emerging as methods to detect coronary artery stenoses and assess cardiac function and morphology. Non-cardiac structures are also amenable to assessment by these non-invasive tests. We investigated the rate of significant and insignificant non-cardiac findings using CT and MRI. A total of 108 consecutive patients suspected of having coronary artery disease and without contraindications to CT and MRI were included in this study. Significant non-cardiac findings were defined as findings that required additional clinical or radiological follow-up. CT and MR images were read independently in a blinded fashion. CT yielded five significant non-cardiac findings in five patients (5%). These included a pulmonary embolism, large pleural effusions, sarcoid, a large hiatal hernia, and a pulmonary nodule (>1.0 cm). Two of these significant non-cardiac findings were also seen on MRI (pleural effusions and sarcoid, 2%). Insignificant non-cardiac findings were more frequent than significant findings on both CT (n = 11, 10%) and MRI (n = 7, 6%). Incidental non-cardiac findings on CT and MRI of the coronary arteries are common, which is why images should be analyzed by radiologists to ensure that important findings are not missed and unnecessary follow-up examinations are avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c

Similar content being viewed by others

References

  1. Schuijf JD, Bax JJ, Shaw LJ et al (2006) Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J 151:404–411

    Article  PubMed  Google Scholar 

  2. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747

    Article  PubMed  Google Scholar 

  3. Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    PubMed  Google Scholar 

  4. Kopp AF, Kuttner A, Trabold T, Heuschmid M, Schroder S, Claussen CD (2003) MDCT: cardiology indications. Eur Radiol 13(Suppl 5):M102–M115

    PubMed  Google Scholar 

  5. Khan MF, Wesarg S, Gurung J et al (2006) Facilitating coronary artery evaluation in MDCT using a 3D automatic vessel segmentation tool. Eur Radiol 16(8):1789–1795

    Article  PubMed  Google Scholar 

  6. Dewey M, Schnapauff D, Laule M et al (2004) Multislice CT coronary angiography: evaluation of an automatic vessel detection tool. Fortschr Röntgenstr 478–483

    Google Scholar 

  7. Kefer JM, Coche E, Vanoverschelde JL, Gerber BL (2006) Diagnostic accuracy of 16-slice multidetector-row CT for detection of in-stent restenosis vs detection of stenosis in nonstented coronary arteries. Eur Radiol DOI 10.1007/S00330-006-0291-5

  8. Kim WY, Danias PG, Stuber M et al (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869

    Article  PubMed  CAS  Google Scholar 

  9. van der Zaag-Loonen HJ, Dikkers R, de Bock GH, Oudkerk M (2006) The clinical value of a negative multi-detector computed tomographic angiography in patients suspected of coronary artery disease: a meta-analysis. Eur Radiol 16(12):2748–2756

    Article  PubMed  Google Scholar 

  10. Pugliese F, Mollet NR, Runza G et al (2006) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:575–582

    Article  PubMed  Google Scholar 

  11. Spuentrup E, Buecker A, Stuber M et al (2003) Navigator-gated coronary magnetic resonance angiography using steady-state free-precession: comparison to standard T2-prepared gradient-echo and spiral imaging. Invest Radiol 38:263–268

    Article  PubMed  Google Scholar 

  12. Becker CR (2005) Coronary CT angiography in symptomatic patients. Eur Radiol 15(Suppl 2):B33–B41

    PubMed  Google Scholar 

  13. Dorgelo J, Willems TP, Geluk CA, van Ooijen PM, Zijlstra F, Oudkerk M (2005) Multidetector computed tomography-guided treatment strategy in patients with non-ST elevation acute coronary syndromes: a pilot study. Eur Radiol 15:708–713

    Article  PubMed  CAS  Google Scholar 

  14. Leschka S, Husmann L, Desbiolles LM et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16(9):1964–1972

    Article  PubMed  Google Scholar 

  15. Husmann L, Alkadhi H, Boehm T et al (2006) Influence of cardiac hemodynamic parameters on coronary artery opacification with 64-slice computed tomography. Eur Radiol 16:1111–1116

    Article  PubMed  Google Scholar 

  16. Hoffmann MH, Shi H, Schmitz BL et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293:2471–2478

    Article  PubMed  CAS  Google Scholar 

  17. Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411

    Article  PubMed  CAS  Google Scholar 

  18. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  19. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  PubMed  Google Scholar 

  20. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  21. Mollet NR, Cademartiri F, van Mieghem CA et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112:2318–2323

    Article  PubMed  Google Scholar 

  22. Salem R, Remy-Jardin M, Delhaye D et al (2006) Integrated cardio-thoracic imaging with ECG-gated 64-slice multidetector-row CT: initial findings in 133 patients. Eur Radiol 16:1973–1981

    Article  PubMed  Google Scholar 

  23. Horton KM, Post WS, Blumenthal RS, Fishman EK (2002) Prevalence of significant noncardiac findings on electron-beam computed tomography coronary artery calcium screening examinations. Circulation 106:532–534

    Article  PubMed  Google Scholar 

  24. Hunold P, Schmermund A, Seibel RM, Gronemeyer DH, Erbel R (2001) Prevalence and clinical significance of accidental findings in electron-beam tomographic scans for coronary artery calcification. Eur Heart J 22:1748–1758

    Article  PubMed  CAS  Google Scholar 

  25. Schragin JG, Weissfeld JL, Edmundowicz D, Strollo DC, Fuhrman CR (2004) Non-cardiac findings on coronary electron beam computed tomography scanning. J Thorac Imaging 19:82–86

    Article  PubMed  Google Scholar 

  26. Haller S, Kaiser C, Buser P, Bongartz G, Bremerich J (2006) Coronary artery imaging with contrast-enhanced MDCT: extracardiac findings. AJR Am J Roentgenol 187:105–110

    Article  PubMed  Google Scholar 

  27. Onuma Y, Tanabe K, Nakazawa G et al (2006) Noncardiac findings in cardiac imaging with multidetector computed tomography. J Am Coll Cardiol 48:402–406

    Article  PubMed  Google Scholar 

  28. Dewey M, Laule M, Krug L et al (2004) Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenoses. Invest Radiol 39:223–229

    Article  PubMed  Google Scholar 

  29. Dewey M, Müller M, Teige F et al (2006) Multisegment and halfscan reconstruction of 16-slice computed tomography for assessment of regional and global left ventricular myocardial function. Invest Radiol 41:400–409

    Article  PubMed  Google Scholar 

  30. Wormanns D, Ludwig K, Beyer F, Heindel W, Diederich S (2005) Detection of pulmonary nodules at multirow-detector CT: effectiveness of double reading to improve sensitivity at standard-dose and low-dose chest CT. Eur Radiol 15:14–22

    Article  PubMed  Google Scholar 

  31. Dewey M, Teige F, Schnapauff D et al (2006) Combination of free-breathing and breath-hold steady-state free precession magnetic resonance angiography for detection of coronary artery stenoses. J Magn Reson Imaging 23:674–681

    Article  PubMed  Google Scholar 

  32. Deshpande VS, Shea SM, Laub G, Simonetti OP, Finn JP, Li D (2001) 3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries. Magn Reson Med 46:494–502

    Article  PubMed  CAS  Google Scholar 

  33. Dowe DA (2006) How to win the coronary CTA turf war. AJR Am J Roentgenol 187:849–851

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Dewey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewey, M., Schnapauff, D., Teige, F. et al. Non-cardiac findings on coronary computed tomography and magnetic resonance imaging. Eur Radiol 17, 2038–2043 (2007). https://doi.org/10.1007/s00330-006-0570-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0570-1

Keywords

Navigation